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Foreword

A majority of economically important plant and animal traits, such as grain yield or meat
production, can be classified as multigenic or quantitative. The application of statistical
methods in the improvement of such traits – applied quantitative genetics – began early
in the 20th century, when many researchers questioned whether the inheritance of these
continuously distributed traits was Mendelian. During the past century, however, both
plant and animal geneticists have obtained convincing evidence that Mendelian principles
apply to quantitative as well as qualitative traits. This evidence has also shaped the general
model that embraces the multiple-factor hypothesis for quantitative traits (with genes
located in chromosomes and hence sometimes linked, and incomplete heritability because
of the contribution of environmental factors to total phenotypic variation).

The early efforts by outstanding scientists, such as R.A. Fisher, G.W. Snedecor and
J.L. Lush, have been followed over the decades with many avenues of research in both
the applied and theoretical aspects of quantitative genetics. More recently, the linking of
molecular genetics and genomics with the study, evaluation and improvement of quantita-
tive traits has become the central theme of much exciting research. The recent developments
in the areas of quantitative trait locus mapping, bioinformatics, marker-assisted selection
and molecular-enhanced breeding strategies have just scratched the surface in the molecular
dissection of complexly inherited traits. DNA-based technologies will provide a complete
new kit of tools for plant and animal breeders for the improvement of quantitative traits.
Genotype–environment interaction will continue to be a major factor as researchers focus on
the improvement as well as the stability of such traits.

This book will serve as a valuable research and teaching reference. The collection of
papers will provide knowledge from which to launch new research efforts on the nature
of the inheritance of quantitative traits as well as the development of new technologies
for improving such traits. Hopefully, it will stimulate expanded efforts to exploit the full
potential of genomics, bioinformatics and molecular-enhanced breeding technologies in the
study and utilization of quantitative variation in plant and animal species.

The efforts of Dr Manjit Kang in organizing the symposium on ‘Quantitative Genetics
and Plant Breeding in the 21st Century’ and the editing of the proceedings are commendable.
He has assembled papers for a truly exceptional volume that will serve as an important
reference for quantitative geneticists and plant and animal breeders for many years into the
future.

Charles W. Stuber
President 2002

American Society of Agronomy
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Preface

. . . simply imagine that new century full of its promise, molded by science, shaped by
technology, powered by knowledge. These potent transforming forces can give us lives fuller
and richer than we have ever known.

William Jefferson Clinton (May 1997)

This book resulted from an international symposium ‘Quantitative Genetics and Plant
Breeding in the 21st Century’ (www.sigmaxi.org/chapter/LocalEvents/LSU.htm) that was
held from 26 to 28 March 2001 in Baton Rouge, Louisiana, under the auspices of the
Louisiana State University Chapter of Sigma Xi, Scientific Research Society, of which I was
President (July 2000–June 2001). Sigma Xi is an international honour society of scientists
and engineers (www.sigmaxi.org).

Quantitative genetics has contributed immensely to the improvement of crops and
animals in the 20th century. The field of quantitative genetics has been important for its
applications to breeding methodologies. Quantitative genetics (or biometrical genetics, as it
was called earlier) came of age with the publication of books by Mather (1949) and Falconer
(1960). The field started to receive focused attention through conferences in the 1960s, as
evidenced by the publication of Statistical Genetics and Plant Breeding, which resulted
from a meeting held in Raleigh, North Carolina, during 20–29 March 1961 (Hanson and
Robinson, 1963). (Of course, there was a conference specifically devoted to heterosis, which
was held in 1950 at Ames, Iowa (Gowen, 1952), followed by another symposium in 1997,
which was held in Mexico City (Coors and Pandey, 1999).) In 1976, the first international
conference on quantitative genetics was held in Ames, Iowa, proceedings of which have
been documented in Pollak et al. (1977). Because of the need to document continuing
advances in the theory of quantitative genetics and its application to plant and animal
breeding, the second international conference on quantitative genetics took place in Raleigh,
North Carolina (31 May–5 June 1987). In the 724-page proceedings of the second conference
(Weir et al., 1988), restriction fragment length polymorphism (RFLP) was mentioned in
two chapters (Schuler, 1988; Soller and Beckmann, 1988), but there was no mention of
quantitative trait loci (QTL). Almost every chapter in Quantitative Genetics, Genomics, and
Plant Breeding has references to QTL. Obviously, it is clear that quantitative genetics has
progressed by leaps and bounds, especially in the direction of mapping QTL with molecular
markers and marker-assisted selection.

The need for increasing food production is obvious because of projections that the world
population will increase from the current 6 thousand million to about 10 thousand million
by the mid-21st century, which translates into an increase of 1 thousand million every 10 or
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12 years during the next 40–50 years. The challenge before us, therefore, is: ‘Can we feed
4 thousand million more people by 2040?’ Quantitative genetics, being the bedrock of
breeding methodologies, has much to offer in meeting this challenge.

The major issues/areas included in this book are: (i) QTL mapping, genomics, marker-
assisted selection, tissue culture and alien introgression for crop improvement; and (ii)
advances in genotype–environment interaction (GEI)/stability analyses. The symposium
brought together experts in the fields of quantitative genetics, crop improvement, tissue
culture and statistics to share their knowledge with colleagues in the profession. The book
contains authoritative chapters written by experts in their fields from around the world.
Because quantitative genetics itself, without practical applications to breeding, is of limited
value, it was deemed necessary to cover other crop-improvement issues, such as tissue cul-
ture and its role in improving crops, GEI and stability analyses, and issues such as nitrogen-
use efficiency (NUE) to increase crop production. A link between the two major subject areas
is suggested by many contributions, highlighting the difficulties that biotechnology-driven
breeding programmes may face in breeding across diversified environments.

The book is basically organized into two major sections, excluding the first chapter,
which represents the banquet talk by a distinguished geneticist, Dr George P. Rédei,
Professor Emeritus, University of Missouri-Columbia. Dr Rédei provides a unique historical
perspective on developments in genetics in the 20th century. His narration of the events is
tinged with humour but factual. He believes the role of quantitative genetics in basic biology
and applied sciences will increase.

Section I relates to issues relative to genomics (including bioinformatics) and
QTL. Because tissue culture and molecular genetics protocols are interrelated, two
chapters relative to this subject are included in the first section. This section comprises
13 chapters.

Dr Bruce Walsh (Chapter 2) points out that the influence of quantitative genetics spans
across plant breeding, animal breeding, evolutionary genetics and human genetics. His view
is that genomics will not reduce the importance of quantitative genetics but will increase
it. He exhorts plant breeders to consider powerful tools developed in animal breeding,
evolutionary genetics and human genetics.

Dr Nicholas A. Tinker (Chapter 3) tells why quantitative geneticists must care about
bioinformatics. Bioinformatics tools and concepts can be applied to quantitative genetics,
and bioinformatics is an area in which the expertise of the quantitative geneticist is required.

Dr Michael J. Kearsey (Chapter 4) explains the problems encountered in QTL analyses
and offers possible solutions. He suggests that initial solutions to some of the problems
involve part-chromosome substitution lines and near-isogenic lines and goes on to discuss
how a novel set of resources – stepped aligned inbred recombinant strains (STAIRS) – could
permit very accurate QTL mapping.

Drs Jean-Luc Jannink and Bruce Walsh (Chapter 5) discuss association-mapping
methods reported primarily in the human genetics literature. In mapping QTL, association
mapping takes advantage of events that created linkage disequilibrium between DNA
markers and QTL in the relatively distant past. The many meioses since those events will
have removed association between a QTL and any marker not tightly linked to it. Association
mapping thus allows for fine mapping.

Dr John W. Dudley (Chapter 6) establishes an excellent bridge between molecular
genetics, quantitative genetics and plant breeding. He points out that combining quantitative
genetic methodologies with genomics information is required to maximize the value of
investments in genomics research.

Dr Jean-Marcel Ribaut and colleagues (Chapter 7) provide a practical example of
the effective use of molecular markers to improve drought tolerance in tropical maize,
which represents an important perspective from an international research centre – the Inter-
national Maize and Wheat Improvement Center (CIMMYT). They strongly suggest that a
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multidisciplinary effort in the areas of breeding, physiology and biotechnology is needed for
understanding plant responses to drought stress.

Dr Diane E. Mather (Chapter 8) provides an overview of genome mapping efforts in
barley. She discusses several examples of QTL research in barley to illustrate important
insights that genome mapping has provided into the genetic control of a number of quantita-
tive traits in barley.

Dr Yunbi Xu (Chapter 9) describes the use of rice as a model plant in molecular biology
research. He covers quantitative traits/QTL relative to bioinformatics and functional
genomics. Because rice is a model plant, any success achieved in this crop should benefit
other crops as well.

Dr Frederic Hospital (Chapter 10) gives an overview of research achievements in
marker-assisted back-cross breeding theory. He also discusses the consequences of marker-
assisted selection and genotype building.

Dr Mark Cooper and colleagues (Chapter 11) emphasize that computer simulation will
be a central tool for evaluating breeding strategies for their power to improve quantitative
traits. They suggest that, by understanding the structure and function of gene networks that
determine traits, researchers will be able to describe and predict gene–phenotype relation-
ships and evaluate the power of molecular-enhanced breeding strategies. They describe and
apply the E(N:K) model, a new class of non-linear quantitative gene network model, as a step
towards achieving this objective.

In a companion article (Chapter 12), Dr Scott C. Chapman and colleagues discuss key
aspects of a modelling framework for linking gene effects to phenotypes. They remark that
the complex coordination of biochemical pathways will mask the ultimate controls of crop
yield for some time. This is an attribute of biological systems where the detection of and the
response to environmental cues is integrated over time-scales (seconds to weeks) and scales
of organism organization (cell compartments to interacting communities of plants).

Dr Roberta H. Smith and Dr Sung Hun Park (Chapter 13) give an overview of the many
facets of the use of plant cell, tissue or organ culture techniques for crop improvement. The
interface between these techniques and molecular techniques is clearly visible.

Drs Darshan S. Brar and Gurdev S. Khush (Chapter 14) describe tissue culture in the
context of transferring alien genes into cultivated rice – one of the world’s most important
cereals.

Section II includes ten chapters related to GEI. I give an overview of the progress that has
been made and future prospects of research related to GEI issues (Chapter 15).

Dr Fred A. Van Eeuwijk and colleagues (Chapter 16) provide an outline of a conceptually
simple method of analysing QTL–environment interaction (QEI). Their method is based on
regression. They view QEI analysis as a direct elaboration of GEI analysis.

Dr R. Moutiq and colleagues (Chapter 17) present results of an experiment relative
to photoperiod response in maize. They describe the elements of GEI for photoperiod
sensitivity and suggest that a better understanding of its inheritance should facilitate a rapid
exchange of germ-plasm across latitudes.

Drs Amarjit S. Basra and Sham S. Goyal (Chapter 18) discuss mechanisms of NUE.
They point out that difficult-to-measure traits or traits of low heritability or high GEI should
benefit from molecular-marker technology and that an integration of agronomic and physio-
logical studies with quantitative genetic approaches should allow selection of genotypes
with high NUE.

Drs Weikai Yan and L.A. Hunt (Chapter 19) explain the use of the genotype effect and
genotype–environment effect (GGE) biplot approach of analysing GEI data. The GGE biplot
software is introduced, which also handles genotype–trait data, diallel-cross data, and
genotype–pathogen race data.

Drs José Crossa and Paul Cornelius (Chapter 20) discuss linear–bilinear models, such as
additive main effects and multiplicative interaction (AMMI) and the shifted multiplicative
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model (SHMM), for analysing GEI and assessing crossover interaction (COI). They describe a
clustering approach using a statistical analysis system (SAS) programme that groups sites (or
genotypes) with negligible genotypic COI.

Dr Alison Smith and colleagues present in Chapter 21 methodology for a spatial
multiplicative mixed model analysis for GEI data. In the companion chapter (Chapter 22),
they illustrate the methodology using two examples.

Dr Monica Balzarini (Chapter 23) discusses applications of mixed model theory
to predict cross performance and analyse multienvironment trials. She uses best linear
unbiased prediction (BLUP) for prediction of crosses not yet tested and to study GEI.

Dr Paolo Annicchiarico (Chapter 24) considers practical issues of defining adaptation
strategies and yield-stability targets in breeding programmes and the contribution of GEI
analysis and selection theory applied to multienvironment yield data. Two case-studies
from Algeria and Italy are presented.

I trust that breeders/geneticists will find the information in this book stimulating and
useful. The authors have done a commendable job of producing most-informative chapters.
The book is intended to be of use to practising breeders and geneticists as well as students
and teachers of plant breeding, genetics and molecular breeding.

I thank all the authors for making common cause with us and sharing their knowledge
and discussing issues with professional colleagues through this vehicle. I also thank Tim
Hardwick of CABI Publishing for believing in this project and helping to transfer technology
to all parts of the world.

Manjit S. Kang
August 2001

Baton Rouge, Louisiana
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1 Vignettes of the History of Genetics

George P. Rédei
University of Missouri, 3005 Woodbine Ct, Columbia, MO 65203, USA

Mendelism

Although many people consider the
beginning of genetics to be the publication
of the ‘Versuche über Pflanzenhybriden’ by
Gregor Mendel in 1866 or the submission
of the manuscript during the preceding
year, the beginning of genetics goes back
to thousands of years before.

All geneticists and practically every-
body else agree today that Mendel’s dis-
covery was an extraordinary achievement.
Fewer people know some interesting details
about how Mendel achieved it. Not only
had he chosen simple characters of an auto-
gamous plant and counted the segregating
offspring, but also it was particularly smart
that for some he did not have to grow the
second generation because the segregation
was already evident by inspecting the pods
(Fig. 1.1). The circumstances also taught him
common sense since he had about 245 m2

nursery space in the monastery garden. It
also shows that not only was Mendel a very
smart man, he also had great sense for practi-
cal matters. During his teaching and priestly

duties, he also founded a savings and loan
bank and a fire brigade. On a photograph
probably taken in 1862, Mendel is shown
examining a beautiful Fuchsia inflorescence
(Fig. 1.2). What intuitive strength that he did

©CAB International 2002. Quantitative Genetics, Genomics and Plant Breeding
(ed. M.S. Kang) 1

Fig. 1.1. Segregation for wrinkled and smooth seeds within the pea fruits heterozygous for the gene.

Fig. 1.2. Gregor Mendel examines a Fuschsia
plant. The photo was taken in about 1862.
(Courtesy of Dr V. Orel.)



not pursue this ornamental plant further!
The chromosome numbers of fuchsias vary
a great deal – 2n = 22, 55, 66 and 77 – and
this confused other students of inheritance
before and after Mendel.

Mendel himself never claimed any laws
to his credit. The term (actually rule (Regel)
rather than laws) was first used by Carl
Correns (1900), and he named them: ‘1.
Uniformitäts- und Reziprozitätsgesetz, 2.
Spaltungsgesetz, 3. unabhängige Kombin-
ation’, namely, first law: uniformity of the
F1 (if the parents are homozygous) and
the reciprocal hybrids are identical (in the
absence of cytoplasmic differences); second
law: independent segregation of the genes
in F2 (in the absence of linkage); and third
law: independent assortment of alleles in the
gametes of diploids. Thomas Hunt Morgan
(1919) also recognized three laws of hered-
ity: (i) free assortment of the alleles in the
formation of gametes; (ii) independent segre-
gation of the determinants for different char-
acters; and (iii) linkage–recombination. In
some modern textbooks only two Mendelian
laws are recognized, but this is against the
tradition of genetics in which the first used
nomenclature is upheld.

Mendel was a former student and teach-
ing assistant of C.J. Doppler, the physicist,
and in the laboratory in Vienna they were
already teaching some statistics. Mendel
was also fortunate in not finding linkage,
which might have been confusing. He used
seven characters and obtained 128 (27) com-
binations. Peas have seven linkage groups,
thus the probability of independence would
have been 6!/76 = 720/117,649 ≈ 0.0061.
Actually some of the genes he studied were
syntenic, e.g. v, fa and le in chromosome 4.
But the distance between fa and le is 114
map units and i and a in linkage group 1 (204
map units) are so far away in the chromo-
some that they segregate independently. It
seems that, among the hybrid combinations
he had, v–le (12 map units) was not included
(Blixt, 1975). This was dubbed appropriately
‘Mendel’s luck’, presumably by J.P. Lotsy, a
German geneticist of the early 20th century.

The printer, who introduced numerous
small errors, had already abused the classic
paper of Mendel. The editor took liberties,

too, and changed some of the spellings pre-
ferred by Mendel. It is known that Mendel
corrected by hand at least some of the 40
reprints he received. Only four of these
reprints have survived. One of them, sent by
Mendel to the renowned Austrian botanist
Anton Kerner, was not opened, as revealed
by the uncut edges of the paper (Krizenecky

and Nemec, 1965).
It was quite unfortunate that his con-

temporaries failed to recognize the signifi-
cance of his research. Carl Wilhelm Nägeli,
the famous professor of botany at the Uni-
versity of Munich and an internationally
renowned authority, felt that it was incon-
ceivable that the plants should obey statisti-
cal rules. He advised Mendel: ‘You should
regard the numerical expressions as being
only empirical because they cannot be
proved rational.’ He went even further and
suggested to Mendel the study of Hieracium
apomicts and raised self-doubts in Mendel
as to whether the observations he carefully
and conscientiously made would really have
general validity (Nägeli, 1867).

One should not be entirely negative
about Nägeli. He was probably the first who
sighted chromosomes around 1842 and
described them in German as Stäbchen or
little sticks in English (Geitler, 1938).

It was not until 1873 that A. Schneider
observed mitosis in Platyhelminthes and,
2 years later, Edouard Strasburger reported
chromosome numbers for several plant
species. Some counts were correct, some
not. The term chromosome was coined in
1888 by the surgeon W. Waldeyer, who was
not really an experimental biologist but was
very good at pigeon-holing (Rédei, 1974).

Professor Nägeli can really be called
an expert by the definition of Henry Ford,
who said the expert knows what cannot be
done: even when he sees that it has already
been accomplished, he can also explain why
it should not have been successful. Nägeli
almost shot down the Mendelian results. He
might also have been influential on Wilhelm
Olbers Focke, who in 1881 in his monograph
on plant hybrids refers only 15 times to
Mendel (nine times in connection with
Hieracium but only once about the pea
experiments) but mentions the name and
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work of Gärtner 409 times, Kölreuter 214
times and several others dozens of times.

Nägeli evoked the ire of the medical
researchers by his ideas on bacterial pleo-
morphism. Pleomorphy meant that bacteria
(he called them Schizomycetes) were not
supposed to possess hard heredity. He
believed that their variability is not here-
ditary but depends entirely on the culture
conditions. Apparently, his laboratory skills
were insufficient and he did not understand
what pure cultures are. Unfortunately,
his influence and ‘authority’ were a
serious impediment to the development
of bacteriology.

Dr W. Migula, Professor at the College
of Technology in Karlsruhe, Germany, gives
a vivid account about the situation in his
System der Bakterien in 1897:

When Nägeli says, p. 20, that ‘Cohn [the
founder of modern bacterial systematics
in 1872] had established a system of genera
and species, in which each function of the
Schizomycetes [bacteria] is represented by
a particular species; by this he expressed
the rather widespread view exclusive to
physicians. So far I have not come across
any factual ground that could be supported
by morphological variations or by pertinent
definitive experiments.’ When Nägeli still
says this in 1877, one must either assume
that he was unaware of the work of the pre-
ceding 5 years, or that he chose to ignore it
on purpose because it did not fit his theory.

Nägeli has also some positive legacies.
I have mentioned before that he was proba-
bly the first to report seeing chromosomes.
In 1884, he published a large volume enti-
tled: Mechanisch-physiologische Theorie
der Abstammungslehre, which is also the
first systematic effort to create a molecular
interpretation of the hereditary material.

Mendel’s problems did not cease with
his death. Anselm Rambousek (Fig. 1.3),
who succeeded Mendel as abbot of the
monastery, destroyed a large part of the
unpublished records and personal notes
after the death of his predecessor. There are
different ways of leaving a historical legacy.

Fortunately, Mendel did not live to read
Sir Ronald Fisher’s (1936) devastating criti-
cism. Fisher, one of the greatest statisticians

ever lived, questioned, in good faith, the ‘too
good to be true’ data of Mendel – although
Fisher tried to find excuses for Mendel, such
as an assistant who was familiar with his
expectations and might have deceived him,
or that he figured out what he was supposed
to find and just wanted to demonstrate the
validity of his hypothesis. Nobody will
ever find out what happened. Some of the
sensation-hungry public media periodically
revisit the Fisher paper and question Men-
del’s integrity. His principles are beyond
doubt. I do not wish to go into the details
because these are familiar to the majority of
the students and workers in genetics. Alfred
Sturtevant (1965) points out that Fisher
erred in the dates, in the number of years of
the experiments and misrepresented some of
the statements in Nägeli’s letters to Mendel.

F. Weiling (1966), a German statistician,
after a thorough analysis arrived at similar
conclusions. Weiling also used more techni-
cal arguments. He pointed out that the
pollen tetrads may clump and then the
distribution may be biased and suggests
the following calculations for chi-square:
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History of Genetics 3

Fig. 1.3. Anselm Rambousek. (Courtesy of Dr V.
Orel.)



where x = the observed, say, recessives,
N = the number of individuals in the
sample, p = the expected frequency of the
phenotype. Weiling provides the following
hypothetical example: x = 152, N = 580,
p = 0.25:
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This has a probability that is very different
from that calculated by Fisher. Weiling also
claims that Fisher erred by assuming the
identity of the reciprocal crosses and did
not take it into account and that might have
affected the chi-square, which should have
been calculated using a correction factor c:
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If the distribution is not really binomial
but semi-random, this also affects the chi-
square value.

Not being a statistician, I do not want to
take a position in the dispute. I only wish
to provide some food for thought in this
case or in general. One point is indisputable:
no matter how Mendel reached his conclu-
sions, he was right. Back in the 1950s, I
conducted larger experiments with mono-
genic segregation of auxotrophic mutants of
Arabidopsis and observed an even better fit
to the 3 : 1 under axenic conditions.

Psychologists have a term for problems
of judgement: multistability of perception.
In layman’s words, you see what you want to
see. Of course, you do not always get what
you see. The British artist Gerald H. Fisher
(1968) (I do not know whether he was kin
to Sir Ronald) graphically illustrated how
these things happen (Fig. 1.4). The upper
drawing shows an ugly man, the lower figure
displays an undressed woman but if you
look long enough both pictures show the
same.

Sometimes, failing memory or perhaps
a drive for humour distorts the historical
facts. In 1949, R.C. Punnett reminisced on
the origin of the Hardy–Weinberg law and
said:

I was asked why it was that, if brown eyes
were dominant to blue, the population was
not becoming increasingly brown eyed: yet
there was no reason for supposing such to
be the case. I could only answer that the
heterozygous browns also contributed their
quota of blues and that somehow this leads
to equilibrium. On my return to Cambridge
I at once sought out G.H. Hardy with whom
I was then very friendly. For we had acted
as joint secretaries to the Committee for the
retention of Greek in the Previous Examina-
tion and we used to play cricket together.
Knowing that Hardy had not the slightest
interest in genetics I put my problem to
him as a mathematical one. He replied
that it was quite simple and soon handed
to me the now well-known formula pr = q2
(where p, 2q and r the proportions of AA,
Aa and aa individuals in the population
varying for the A–a difference). Naturally
pleased at getting so neat and prompt an
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Fig. 1.4. Gerald Fisher's (1968) graphic illustration
of the multistability of perception. Basically the
same object (or principle in science) may mean
different things depending on when and how one
looks at it. Both figures above may appear as a
sad male face or a nude. (By permission of the
Psychonomic Society.)



answer I promised him that it should
be known as ‘Hardy’s Law’ a promise ful-
filled in the next edition of my Mendelism.
Certain it is that ‘Hardy’s Law’ owed its
genesis to a mutual interest in cricket.

Punnett might not have ever read the
seminal paper of Hugo de Vries in 1900,
where he said much earlier:

Si l’on appelle D les grains de pollen ou
les ovules ayant un caractère dominant et
R ceux qui ont le caractère récessif, on
peut se représenter le nombre et la nature
des hybrides par la formule représentative
suivante, dans laquelle les nombres D et R
sont égaux:

(D + R)(D + R) = D2 + 2DR + R2

This is, of course, no different from what all
textbooks call either the Hardy–Weinberg
law or the Castle–Hardy–Weinberg theorem.

Why Genetics was a Late Bloomer

The question often emerges why genetics
started so late relative to other sciences.
Copernicus (1473–1543) centuries earlier
had proposed essentially valid ideas about
the celestial bodies. Galileo (1564–1642)
developed theories on dynamics and
astronomy. Newton (1642–1729), who

understood something about genetics by
being also a sufferer from the complex
hereditary disease gout, pioneered in
gravitation and energy. Dalton (1766–1844)
developed an atomic theory, although he
was afflicted by X-linked red–green colour-
blindness and, being a physicist, he quite
clearly described his malady. In litera-
ture, Shakespeare (1564–1616), Molière
(1622–1673) and Goethe (1749–1832) pre-
ceded Mendel. The latter – besides being an
immortal poet – contributed significantly
to the understanding of the biology of dev-
elopment. Mozart (1756–1791) and Beet-
hoven (1770–1827) elevated music to an
unsurpassable beauty. Strangely, Beethoven
was tormented by a hearing deficit and that
might have been the reason why he elected
not to marry and have offspring, although
he was romantically involved with several
women.

There were several causes of the late
development of genetics. Basic biological
mechanisms of reproduction were not
understood. Experimental procedures were
not used. I cannot tell whether the ancient
Egyptians comprehended the consequences
of human inbreeding, but the artists of the
14th century BC depict the pharaoh and his
wife’s offspring like Wilhelm Johannsen’s
(1857–1927) famous beans (Fig. 1.5).
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Fig. 1.5. King Akhenatan, Queen Nefertiti and three of their daughters. Bas-relief from the tomb of Apy at
Amarna, c. 1362 BC. (From Aldred (1961) Thames & Hudson, by permission.)



Aristotle (384–322 BC) writes that, in
Abyssinia, mice get pregnant if they lick salt.
He probably did not believe it, but the ‘infor-
mation’ might have come from a respected
source so he felt obligated not to dispute it.
He also stated that women had fewer teeth
than men. It is hard to understand why he
never looked into the mouth of his wife or
mother; this would not have required a grant
or special equipment.

When Aristotle reviews the ancient
theories of sex determination, he finds them
all unsatisfactory:

Some suppose that the difference [between
sexes] exists in the germs from the begin-
ning; for example, Anaxagoras and other
naturalists say that the sperm comes from
the male and that the female provides the
place [for the embryo], and that the male
comes from the right, the female from the
left, since in the uterus the males are at the
right and the females at the left. According
to others, like Empedocles, the differentia-
tion takes place in the mother, because,
according to them, the germs penetrating
a warm uterus become male, and a cold
uterus female.

Several of his other reported cases of
heredity seem, however, quite plausible and
sensible, while others are utter nonsense.
Aristotle states that mutilations are not
transmitted to the offspring but blindness
and some scars may be. There are more
defective males than females. The normal
eye colour is black, and blue is a deficiency
of the shade. Some of the travelling ‘Freiherr
Münhausen’s’-like stories find their ways
into his erudite books. In Libya – he writes –
because of drought and heat diverse species
of thirsty animals congregate at an oasis and
mate. From such misalliances, for example,
camel × sparrow → ostrich arises or the
wild boar would have its origin by ants
mating with lions. The Roman Pliny (AD

23–79) remarks ‘si libeat credere’ – if we are
permitted to believe in tall stories.

On the other hand, even students of
Linnaeus – for example, the savant Außtro-
Finlandus Johannes J:nis Haartman (1751)
– faithfully retell the incredible fantasies.
So does practically everybody else through

the centuries. The Soviet charlatans during
the Lysenko era in the 20th century
(Medvedev, 1969), who destroyed genetics
and maimed many outstanding geneticists
(e.g. Agol, Vavilov and hundreds of others),
postulated similar fantastic nonsense (vege-
tative hybrids, inheritance of environmen-
tally acquired traits, etc.).

Besides the lack of experimentation and
the slavish submission to the ancient books,
there was another negative force, expressed
by Joshua Sylvester in the 16th century.
Sylvester answers the ‘New objection of
Atheists, concerning the capacitie of the
Ark’:

O profane mockers! if I but exclude
Out of this Vessell a vast multitude
Of since-born mongrels, that derive their

birth
From monstrous medly of Venerian mirth:
Fantastick Mules, and spotted Leopards
Of Incest-heat ingendred afterwards:
So many sorts of Dogs, of Cocks, and Doves
Since, dayly sprung from strange & mingled

loves,
Where in from time to time in various sort,
Daedalian Nature seems her to disport:
If plainer, yet I prove you space by space
And foot by foot, that all this ample place,
By subtill judgement made and Symmetrie,
Might lodge so many creatures handsomely,
Sith every brace was Geometricall:
Nought resteth (Momes) for your reply at

all;
If, who dispute with God, may be content
To take for current, Reason’s argument.

The Reverend Dr Hodge of Princeton
University, expressing the opinions of many
of his contemporaries about Darwinism,
remarked: ‘to ignore design as manifested in
God’s creation is to dethrone God’ (Provine,
1971, p. 10).

Dr A.F. Wiegmann, a physician from
Brauschweig, Germany, was a prize-winner
of the Physical Section of the Royal Prussian
Academy of Sciences in 1826; his thesis in
the competition sought to shed light on the
problem: ‘Gibt es ein Bastarderzeugung im
Pflanzenreiche?’ (Is there any hybridization
in the plant kingdom?). On the second
attempt he received only half the prize
because he could not prove to the
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distinguished panel’s complete satisfaction
that plants do form hybrids. In his detailed
report, he complains about his deteriorating
vision, trembling hand, difficulties in bend-
ing and kneeling in his backyard and, above
all, he is worried about the neighbours who
might think that he is sodomizing plants
(Roberts, 1965).

Some of the attempts with animal
hybridization (wolf × mastiff) described by
George Louis Le Clerc Compte de Buffon
(1707–1788) were even more disastrous. The
wolf killed the dog and mauled the curious
experimenter (Olby, 1966).

During the preceding era, experimenta-
tion had not been very popular. All this
was changing now with the Enlightenment
philosophy of the 18th century. The lan-
guage may still be Latin but the ideas
are revolutionary. In 1759 the St Petersburg
Russian Academy of Sciences offered a prize
for proving:

Sexu plantarum argumentis et experimentis
novis, praeter adhuc iam cognita, vel
corroborare vel impugnare, premissa
expositione historica et physica omnium
plantae partium, qui aliquid ad
fecundationem et perfectionem seminis et
fructus conferre creduntur. [Sexuality of
plants should be confirmed or refuted by
arguments and new experiments, besides
those that are already known, by presenting
the history and the physical parts of all
plants that are believed to have contributed
to the seed and fruits.]

Kölreuter, an early plant hybridizer,
apparently, stipulated these requirements
(Roberts, 1965).

This is a major milestone on the way to
experimental science. The Academy wanted
to see not just the records of the observations
but also the physical evidence, fruits, seeds
and all other plant parts. Linnaeus entered
and won the contest and later expressed his
wishes to spend the rest of his life studying
plant hybrids.

Felix Hoppe-Seyler, a not particularly
modest editor of the journal Hoppe-Seylers
Medizinische-Chemischen Untersuchungen,
set similar critical requirements. When he
received Friedrich Miescher’s manuscript of
the initial study on nuclein in 1869, the

thorough editor did not publish it until 1871,
when he himself had a chance to confirm the
information along with two separate papers,
authored by two of his students, which
showed that Miescher was correct. Actually
Hoppe-Seyler and his team had proved that
nuclein was not a substance unique to pus
cells but was present in red blood cells, in
yeast and even in milk, and this is also the
beginning of the DNA story (Borek, 1965).

The obvious question arises: is such
an editorial policy desirable or not? In this
case it actually worked well and eventually
the priority was posthumously credited to
Miescher alone, despite the ‘piracy’ of
his intellectual property. Editorial heavy-
handedness does not always have such a
happy ending. Hoppe-Seyler rejected the
paper of MacMunn dealing with haematin, a
pigment present in tissues besides blood.
MacMunn’s results were thus not appreci-
ated until 1925, when another biochemist,
Keilin, showed that MacMunn was right and
this pigment was important for respiration
(Borek, 1965).

There are several examples of similar
poor judgement by experts. The editor of
the Lancet rejected – for lack of understand-
ing – the seminal manuscript of L. and H.
Hirszfeld on the frequencies of the three
alleles of the ABO blood group and the
article could find its way only into
Anthropologie, a less widely read journal
(Stoneking, 2001). H.J. Muller was fired from
the University of Massachusetts shortly
before he was awarded the Nobel prize
(1946) because the administration was not
satisfied with his teaching skills. A graduate
student, according to my non-scientific sur-
vey, had a completely different view. Nature
(London) rejected the manuscript of Hans A.
Krebs, who became a Nobel laureate for the
same work in 1953. In 1970, a distinguished
genetics panel declared Arabidopsis to be
planta non grata, but, by 2000, it became the
first completely sequenced higher plant and
more papers are being published about it
than any other plant species.

Hugo de Vries, Carl Correns and Erich
von Tschermak-Seysenegg rediscovered
Mendel’s work in 1900. The circumstances
of the rediscovery were also controversial.
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H. de Vries, in this first paper, did not refer
to Mendel and his explanations regarding
whether he had ignored or forgotten him
are contradictory. In a letter written to H.F.
Roberts  (1965),  de  Vries  claimed  that  he
worked out the Mendelian rules all by
himself without the help of Mendel’s work.
A.H. Sturtevant (1965, p. 27) casts some
doubt on the truthfulness of this claim:

In 1954, nineteen years after the death of
de Vries, his student and successor Stomps
reported that de Vries had told him that he
learned of Mendel’s work through receiving
a reprint of the 1866 paper from Beijerinck,
with a letter saying that he might be
interested in it. The reprint is still in the
Amsterdam laboratory, as has been stated.

Despite these facts, de Vries generally
receives more credit in the literature than
Correns, whose contributions to genetics are
much more substantial. Tschermak’s work
is the least valuable and the least original.

Bateson, while travelling on a train and
reading, came across the Mendelian experi-
ments and the confirmations. He became
the most ardent Mendelian and the most
diligent public relations man for the new
ideas. He encountered stiff resistance from
various corners, mainly from the bio-
metricians, students and followers of Sir
Francis Galton. Bateson published an enthu-
siastic book in 1902: Mendel’s Principles of
Heredity: a Defence.

Karl Pearson, a man of enormous intel-
lect, was one of the most vociferous critics
of Bateson. According to him, the purity
of the gametes theory was ‘not elastic enough
to account for the numerical values of the
constants of heredity hitherto observed’
(Pearson, 1904). He requested that the
Mendelians provide ‘a few general princi-
ples . . . which embrace all the facts ded-
ucible from the hybridization experiments’
(Pearson, 1904). Bateson was ill equipped to
deal with the mathematical tasks that would
‘form the basis of a new mathematical inves-
tigation’ (Pearson, 1904). G. Udney Yule
(1907) came to the rescue of Batesonism by
accepting the compatibility of Mendelism
and biometry. Wilhelm Johannsen (1909)
wrote a great book with the purpose of

demonstrating the need of biometry in
understanding genetics. It is regrettable that
this monumental work has not been trans-
lated into English and is inaccessible to
many geneticists due to a language barrier.

The amalgamation of biometry and
genetics did not happen readily. In the
journal Genetics, the statistical papers are
still relegated to the back of issues. Many
geneticists find the language and concepts
obtrusive because of lack of adequate
mathematical preparation. Roger Milkman
reported several years ago about an inter-
national meeting of statistical genetics, that
the papers were apparently beautiful, albeit
he did not understand them but hoped that
the speakers did.

Pearson’s confidence in the application
of biometry to genetics was well vindicated
by the development of the shotgun sequenc-
ing of genomes, which could not have
been carried out without very powerful
computers and computer programs (Sharing
the glory not the credit. Science 291, 1189
(2001)).

The general acceptance of Mendelism
continued after the rediscovery not only
by the biometricians but also by the embry-
ologists, evolutionists and zoologists. Never-
theless, at the 6–8 January 1909 meeting
of the American Breeders’ Association in
Columbia, Missouri, Professor T.H. Morgan
of Columbia University did not attend
personally  –  maybe  because  of  contempt
for the predominantly agricultural audience
– but he submitted a paper entitled ‘What
are “factors” in Mendelian explanations?’ A
member of the Zoology Department read it:

In modern interpretation of Mendelism,
facts are being transformed into factors at
a rapid rate. If one factor will not explain
the facts, then two are invoked; if two prove
insufficient, three will sometimes work out.
The superior jugglery sometimes necessary
to account for the results may blind us, if
taken too naïvely, to the common-place
that the results are often so excellently
‘explained’ because the explanation was
invented to explain them. We work back-
wards from the facts to the factors, and
then, presto! explain the facts by the very
factors that we invented to account for
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them. I am not unappreciative of the
distinct advantages that this method has
in handling the facts. I realize how valuable
it has been to us to be able to marshal our
results under a few simple assumptions,
yet I cannot but fear that we are rapidly
developing a sort of Mendelian ritual by
which to explain the extraordinary facts
of alternative inheritance.

The Rise of Drosophila and Cytogenetics

By the time this paper and others similar in
tone appeared in print, an unusual, strange
event took place. (I am relating the story
as I heard it from Dr E.G. Anderson, who
was at that time a graduate student of R.A.
Emerson at Cornell University.)

C.W. Woodworth, an entomology
student, introduced Drosophila to the
Harvard laboratory of William Castle, and
Morgan also used it as a tool for his embryol-
ogy class. One day, he wanted to demon-
strate the phototropism of the flies. As
Mrs Lillian Morgan opened a matchbox
containing Drosophila, Professor Morgan
went to the window and told the students to
watch how the flies would come towards
him. Facing the flies, Dr Morgan discovered
a white-eyed one. He became interested in it,
but, despite the assistance of the students,
the fly escaped. Next day, a mutant male was
captured and thus the future of genetics was
changed.

In 1910 and 1911, Morgan, an embryolo-
gist, published the first genetics paper on
‘sex-limited’ inheritance. This was new for
Drosophila and Morgan but not for genetics.
Four years earlier, Doncaster and Raynor
(1906), working with the Abraxas moth,
discovered criss-cross inheritance and,
despite the assistance of William Bateson,
the puzzle could not be rationalized. Their
hypotheses broke down.

Miss N.M. Stevens and Professor
Edmund Wilson each showed in 1905 that
the ‘unknown’ X chromosome of Henking
(1891) was actually a sex-determining
chromosome. Wilson and Morgan were
colleagues at Columbia University and they

knew about each other’s work. Thus, sex
linkage was a simple inference.

There was, by that time, a lot of interest
in chromosomes. Before the turn of the
century, several authors had published
chromosome numbers, including that of
humans. Bardeleben observed about 16,
while Flemming was sure that there were
more than 16 (Sutton, 1903). De Winiwarter
(1912) in sectioned testes observed 46
autosomes + an X chromosome but no Y
chromosome. The latter is, of course, the
smallest: according to the human genome
draft (excluding gaps) it contains only 21.8
megabases versus the X chromosome, which
has 127.7 megabases (Lander et al., 2001).
In the ovaries, de Winiwarter observed,
correctly, a total of 46 chromosomes. During
the following decades, various numbers
were reported even by the same investigators
(von Nachtsheim, 1959). In 1952, T.C. Hsu
(von Nachtsheim, 1959), using a hypotonic
solution, claimed 48, but subsequently Tijo
and Levan (1956) showed, by a similar
technique, adding also colchicine, beyond
any doubt that humans have only 46 (von
Nachtsheim, 1959).

A historical irony is that, in 1953,
Cyrill Darlington, one of the most renowned
cytologists, published a popular book Facts
of Life with a photomicrograph of Hsu on the
cover and showing only 46 chromosomes,
but he cited it as evidence for 48 human
chromosomes (von Nachtsheim, 1959).

The problem remained controversial,
although the majority of cytologists con-
firmed that 46 was the correct number.
M. Kodani in several papers between 1956
and 1958 reported 46, 47 and 48 chromo-
somes in both Japanese and US white
individuals (von Nachtsheim, 1959).

Various banding techniques were devel-
oped during the 1970s by Torbjörn Casper-
son and associates and were expanded by
others, which yielded the human chromo-
some pictures as they are used for cyto-
genetic maps (Caspersson et al., 1968). By
1996, Speicher et al., using multiplex
fluorescence in situ hybridization (FISH)
technology, distinguished each human chro-
mosome with a distinct colour (Fig. 1.6).
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Let us jump back in time to 1903, when
Walter Sutton published an epoch-making
paper on chromosomes in heredity. He
correctly asserted that the chromosomes
are not separated by paternal and maternal
groups, although the two groups are equiva-
lent. There are two distinct types of nuclear
divisions, equational and reductional (van
Beneden, 1883). The chromosomes retain
their individuality in the process. He
assumed with Bardeleben that there are
16 chromosomes in humans and thus they
may produce 16 × 16 = 256 gametic combi-
nations. The 256 gametic types can thus
produce 256 × 256 = 65,536 phenotypes. He
assumed linkage, but for recombination he
suggested ‘segmental dominance’. His com-
binations are not too far from the current
estimated human gene numbers.

Carl Correns, who also discovered cyto-
plasmic (chloroplast) inheritance, observed
linkage in 1900 and suggested in 1902 a
model for recombination 9 years before
Morgan.

The majority of geneticists know that
Carl Correns was one of the three redis-
coverers of the Mendelian principles in 1900
and reported linkage in Matthiola in 1900.

He was also one of the discoverers of cyto-
plasmic inheritance (Correns, 1909).

In 1902, Correns suggested a mecha-
nism for crossing over 9 years before
Morgan’s paper appeared in the Journal of
Experimental Zoology.

We assume that in the same chromosome
the two anlagen of each pair of traits lie
next to each other (A next to a and B next
to b, etc.) and that the pairs of anlagen
themselves are behind each other. A, B, C,
D, E, etc. are the anlagen of parent I; a, b, c,
d, e, etc. are those of parent II. Through
the usual cell and nuclear divisions the
same type of products are obtained as the
chromosomes split longitudinally . . . When
one pair contains antagonistic anlagen,
while the rest of the pairs are formed of two
identical types of anlagen, or the anlagen
are ‘conjugated’ as they are in Matthiola
hybrids, which I have described, then
further assumptions are necessary . . . Then
AbCdE/aBcDe and aBcDe/AbCdE yield
both AbCdE and aBcDe; ABcdE/abCDe and
abCDe/ABcdE both ABcdE and abCDe, etc.

Another really remarkable paper is
slowly sinking into oblivion or is totally mis-
represented. On 9 July 1909 (more than two
decades earlier than the Neurospora work of
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Fig. 1.6. Multiplex FISH staining by 1996 distinguished each human chromosome by their special
fluorescent colour. (Courtesy of Michael R. Speicher.)



Carl Lindegren in 1932), F.A. Janssens, Pro-
fessor at the University of Louvain, Belgium,
presented his theory of chiasmatypy (Fig.
1.7) in the journal La Cellule:

In the spermatocytes II, we have in the
nuclei chromosomes, which show one
segment of two clearly parallel filaments,
whereas the two distal parts diverge . . .
The first division is therefore reductional
for segment A and a and it is equational
for segment B and b . . . The 4 spermatids
contain chromosomes 1st AB, 2nd Ab, 3rd
ab, and 4th aB. The four gametes of a tetrad
will thus be different . . . The reason behind
the two divisions of maturation is thus
explained . . . The field is opened up for a
much wider application of cytology to the
theory of Mendel.

Elof Carlson (1966) – in his otherwise
excellent book – cites this paper and even
shows with some drawings that Janssens
believed that recombination takes place
at the two-strand stage. The drawings of
Carlson are, however, nowhere in the publi-
cation of Janssens. When Morgan discovered
crossing over 2 years later, he acknowledged
the priority of Jannsens, who, however, had
only cytological evidence.

Morgan’s student, Sturtevant, con-
structed the first genetic map and recog-
nized inversions as crossing-over inhibitors.
Morgan, Bridges and Muller revealed the
basic mechanics of recombination. Bridges
discovered non-disjunction, deletion,
duplication and translocation. The list
above includes only the most significant

discoveries of the chromosomal theory of
inheritance.

Bateson, the great champion of genetics,
who coined the term genetics and whom,
in 1926, T.H. Morgan eulogized with these
words: ‘His rectitude was beyond all praise
and recognized by friend and foe alike,’
concluded a memorial lecture in 1922 at
the University of Pennsylvania with the
following warning:

I think we shall do genetical science no
disservice if we postpone acceptance of the
chromosome theory in its many extensions
and implications. Let us distinguish fact
from hypothesis. It has been proved that,
especially in animals, certain transferable
characters have a direct association with
particular chromosomes. Though made in
a restricted field this is a very extraordinary
and most encouraging advance. Neverthe-
less the hope that it may be safely extended
into a comprehensive theory of heredity
seems to me ill-founded, and I can scarcely
suppose that on wide survey of genetical
facts, especially those so commonly wit-
nessed among plants, such an expectation
would be entertained. For phenomena to
which the simple chromosome theory is
inapplicable, save by the invocation of a
train of subordinate hypotheses, have been
there met with continually, as even our
brief experience of some fifteen years has
abundantly demonstrated.

(Bateson, 1926)

Morgan very successfully exploited
the potentials of his ‘fly room’ and trained
a remarkable series of students (Bridges,
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Fig. 1.7. Meiotic configurations, borrowed from the zoological literature, used by Janssens (1909) to
support his idea of chiasmatypy, in current terminology crossing over and recombination. (See text for
detailed explanation.)



Sturtevant, Muller,* Dobzhansky, Curt
Stern, Bonnier, Komai, Gabritchevsky,
Olbrycht, Altenburg, Weinstein, Gowen,
Lancefield, Mohr, Nachtsheim, E.G. Ander-
son, Jack Schultz and others), whose work
became the foundation of classical genetics
and the main menu of textbooks for decades
to come. Morgan’s association with the
California Institute of Technology signalled
a more modern trend of genetics and
the development of a younger generation
of geneticists, such as Beadle,* Tatum,*
Ephrussi, Delbrück,* Norman Horowitz,
Lindegren, Schrader and E.B. Lewis.* The
students of their students, such as Leder-
berg,* Doerman, Srb and others, made a last-
ing impact on the future course of genetics.

An interesting episode of the Cal Tech
and the preceding period of Morgan has
been recorded by Henry Borsook (1956). In
the late 1920s, Edwin Cohn, the physical
chemist, asked T.H. Morgan, the first Nobel-
laureate geneticist, what his research plans
were. Morgan’s answer was: ‘I am not doing
any genetics, I am bored with genetics. But I
am going out to Cal Tech where I hope it will
be possible to bring physics and chemistry to
bear on biology.’

Shortly after Morgan arrived at Cal
Tech, Albert Einstein visited the laboratory
and posed almost the same question. Mor-
gan’s answer was about the same as before.
Einstein shook his head and said, ‘No, this
trick won’t work. The same trick does not
work twice. How on earth are you ever going
to explain in terms of chemistry and physics
so important a biological phenomenon
as first love?’ Sure enough, in the 1930s,
Morgan could not provide an answer to
Einstein’s question, but at the current rate of
advances of molecular neurogenetics some
clues may soon be available.

Mutation

In 1927, H.J. Muller in Drosophila and
independently L.J. Stadler (1928) in barley

and maize proved that X-rays can induce
mutations.

The Nobel-laureate immunologist, Peter
Medawar, remarked once that wise people
may have expectations, but only fools make
predictions. Of course, brilliant people may
make brilliant errors.

In a somewhat ill-conceived manner,
in 1941, at the 9th Cold Spring Harbor Sym-
posium on Quantitative Biology (p. 163), H.J.
Muller stated:

We are not presenting . . . negative results
as an argument that mutations cannot be
induced by chemical treatment . . . It is not
expected that chemicals drastically affect-
ing the mutation process while leaving
the cell viable will readily be found by our
rather hit-and-miss methods. But the search
for such agents, as well as the study of the
milder, ‘physiological’ influences that may
affect the mutation process, must continue,
in the expectation that it still has great
possibilities before it for the furtherance
both of our understanding and our control
over the events within the gene.

Charlotte Auerbach and J.M. Robson
might have already solved the problem
when belatedly – because of wartime
security restrictions – in 1944 they reported
successful induction of mutations with
radiomimetic chemicals. Muller worked for
a period of time along with Auerbach in G.
Pontecorvo’s laboratory in Edinburgh after
his return, via Spain, from his unhappy
sojourn in the Soviet Union.

Despite all, H.J. Muller was the well-
deserving second geneticist recipient of
the Nobel prize for his studies on mutation.
Science magazine in November 1946 (Vol.
104, p. 483) proudly reported the award,
and perhaps appropriately with a printing
‘mutation’ or typo.

Non-nuclear Inheritance

W. Haacke assumed in 1893 that the
waltzing–walking traits of mice are located
in cytoplasmic elements (the centrosome),
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whereas coat colour (white–grey) segrega-
tion is assured by the reductional division
of the chromosomes. ‘I do not know whether
the number of chromosomes present in
mice had been recorded, but this number
would enable us to establish the possible
combinations.’ The fact that he was able to
obtain experimentally all 16 combinations
of these four traits seemed to indicate to
him the validity of this interpretation.

C. Correns (1909) and E. Baur (1909),
independently, reported genuine cytoplas-
mic inheritance in various plants, and their
findings were abundantly confirmed later.

Professor T.H. Morgan in 1926 expres-
sed the following view: ‘except for the rare
cases of plastid inheritance, the inheritance
of all known characters can be sufficiently
accounted for by the presence of genes in the
chromosomes. In a word the cytoplasm may
be ignored genetically.’

John R. Preer, Jr (1963), an eminent
contributor to the field, remarked:

Cytoplasmic inheritance is a little bit like
politics and religion from several aspects.
First of all, you have to have faith in it.
Second, one is called upon occasionally to
give his opinion of cytoplasmic inheritance
and to tell how he feels about the subject.

Pleiotropy

The term pleiotropy was coined by Ludwig
Plate, a German geneticist, and he wrote in
1913:

ein Gen in manchen Fällen gleichzeitig
mehrere Markmale, die zu ganz
verschiedenen Organen gehören können,
beinflußt. Eine solche Erbeinheit habe ich
. . . pleiotrop genannt [a gene in many
instances can influence several traits,
which can be involved with different
organs].

Interestingly, in Sutton (1959) the following
discussion has been recorded:

Fremont-Smith: Can one gene operate only
in one highly specified environment and
perform only one function? Would any
other environment either suppress its
activity or be lethal? Or can a gene perform

a variety of functions, depending upon the
environment to which it is exposed?
Lederberg: There is no qualitative
difference in the product, depending on the
environment.
Wagner: But that which the gene forms acts
differently in different environments.
Fremont-Smith: It has no multiple potenti-
ality at all?
Lederberg: Pleiotropism non est.
Fremont-Smith: Did you add, at the ‘dogma’
level?
Lederberg: In terms of the primary product,
that is the doctrine.

By the 1980s and 1990s, mitochondrial
functions have been thoroughly studied by
many geneticists. The fact that single base-
pair mutations in the human mitochondrial
tRNALeu and other tRNAs may cause more
than single human disease is clear evidence
for pleiotropy (Fig. 1.8).

Definition of the Gene

These and other recent developments may
modify the definition of the gene:

Woltereck (1909): A reaction norm.
Sturtevant (1965): Mendel usually used the
term Merkmal for what we now term gene.
Suzuki et al. (1976): The fundamental
physical unit of heredity.
Klug and Cummings (1983): A DNA
sequence coding a single polypeptide.
Elseth and Baumgardner (1984): a segment
of the DNA that codes for one particular
product.
Strickberger (1985): In modern terms, an
inherited factor that determines a biological
characteristic of an organism is called a
gene.
Russel (1992): The determinant of a
characteristic of an organism.
Gray Lab Internet Glossary (2001): Genes
are formed from DNA, carried on the
chromosomes and are responsible for the
inherited characteristics that distinguish
one individual from another. Each human
individual has an estimated 100,000
separate genes.

Each of these definitions has some cor-
rect elements. Probably the best is still that of
Woltereck (1909). The least pleasant one is
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the last. Genes are not formed from DNA.
Genes are either DNA or RNA depending on
the organism. Genes are not on the chromo-
somes but the genes are in the chromosomes;
actually the DNA forms the backbone of the
chromosomes. The number of human genes
is most unlikely to be 100,000; the latest
estimates indicate about 35,000.

How would I define briefly the gene
today?

Gene: a specific functional unit of DNA
(or RNA) potentially transcribed into
RNA or coding for protein(s). A group of
cotranscribed exons but, due to alternative
splicing, exon shuffling, overlapping
or using more than one promoter or
termination signal, the same DNA sequence
may encode more than a single protein.
A common structural organization of
protein-encoding genes in eukaryotes:

enhancer – promoter – leader – exons
– introns – termination signal –
polyadenylation signal – downstream
regulators

The vast majority of the human genes are
‘mosaics’ containing seven to nine exons of
120 to 150 bp each. In some genes, the exon
number may be much larger (e.g. in titin
about 200). In between exons, there are
1000–3500 bp introns. The size of the
introns may be many times larger. The num-
ber of coding nucleotides generally varies
between 1100 and 1300 bp, but the larger
genes may have much longer coding
sequences. The exons + introns + 5′ and 3′
untranslated sequences combined, the gen-
omic genes, in general, extend to 14–27 kb
DNA. The human dystrophin gene in the X
chromosome extends to about 2300 kb. A
large fraction of the human genes are alter-
natively spliced and thus the same gene
may be translated into two, three or more
kinds of proteins. Genic sequences (2–3%)
are richer in GC nucleotides than the non-
coding tracts. In prokaryotes, introns are
rare and the genes are much smaller (Rédei,
2002).

Gene Numbers

The number of genes per genome of an
organism can be estimated by molecular
analysis on the basis of mRNA complexity
or by total sequencing of the genome. The
estimates based on mRNA can be best
determined when the entire genome is
sequenced. By the latter method, the single-
stranded RNA phage, MS2, was found to
have four genes. The gene number has also
been estimated from mutation frequencies.
If the overall induced mutation rate, for
example, is 0.5 and the mean mutation rate
at selected loci is 1 × 10−5, then the number
of genes is 0.5/(1 × 10−5) = 50,000. Although
this method is loaded with some errors, the
estimates so obtained appear reasonable.
On the basis of mutation frequency in
Arabidopsis, the total number of genes was
estimated to be about 28,000 (Rédei et al.,
1984). The number of genes of Arabidopsis
was estimated to be 25,498 after sequencing
the genome. In Drosophila, ~17,000 genes
were claimed on the basis of mRNA com-
plexity. On the basis of the sequenced
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Fig. 1.8. Pleiotropic mutations in a human
mitochondrial gene transcribed into UUR-tRNALeu.
CMy, cardiomyopathy; My, myopathy; MELAS,
mitochondrial myopathy, encephalopthy, lactic
acidosis, stroke; PEO, progressive external
ophthalmoplegia; EMy, encephalopathy,
myocardia; MyCMy, myopathy, cardiomyopathy;
MERFF, myoclonic epilepsy, ragged-red fibres.
(Redrawn and modified after Moraes, 1998.)



genome, the estimate is now ~13,600. Dur-
ing the 1930s, C.B. Bridges counted ~5000
bands in the Drosophila salivary chromo-
somes and for many years it was assumed
that each band represented a gene. By 1928,
John Belling had counted 2193 chromo-
meres in the pachytene chromosomes of
Lilium pardalinum and assumed that this
number corresponded to the number of
genes (Belling, 1928).

Nucleotide sequencing of 69 salivary
bands in the long arm of chromosome 2
of Drosophila pointed to the presence of
218 protein-coding genes, 11 tRNAs and 17
transposable element sequences within that
~2.9 Mb region. The shotgun sequencing
of the Drosophila genome identified
~13,600 genes encoding 14,113 transcripts
because of alternate splicing. In humans,
75,000–100,000 genes were expected on the
basis of physical mapping; of these about
4000 may involve hereditary illness or can-
cer. The human gene number estimates in
2001 still varied from ~27,000 to ~150,000.
In Saccharomyces, in the 5885 open reading
frames, 140 genes encode rRNA, 40 snRNA
and 270 tRNA. About 11% of the total pro-
tein produced by the yeast cells (proteome)
has a metabolic function; 3% each is
involved in DNA replication and energy
production; 7% is dedicated to transcrip-
tion; 6% to translation; and 3% (200) consti-
tutes different transcription factors. About
7% is concerned with transporting mole-
cules and about 4% constitutes structural
proteins. Many proteins are involved with
membranes. In Caenorhabditis, 19,099 pro-
tein-coding genes are predicted on the basis
of the sequencing of the genome. The mini-
mal essential gene number has also been
estimated by comparing presumably identi-
cal genes in the smallest free-living cells
Mycoplasma genitalium and Haemophilus
influenzae, both completely sequenced.
Insertional inactivation mutagenesis indi-
cated the minimal number to be ~265–300.
In Caenorhabditis elegans, about 20 times
more genes are indispensable for survival.
In higher organisms, the number of open
reading frames may be larger than the num-
ber of essential genes (Rédei, 2002).

The gene number may not accurately
reflect the functional complexity of a genome
or organism because the combinatorial
arrangement of proteins may generate great
diversity and specificity. A synopsis of how
these genes function would be most reward-
ing if one were able to present it even as a
bird’s-eye view. The most simplistic views
are in the daily newspapers.

This sweeping and selective overview
has missed out much important historical
development. Fortunately, quantitative and
population genetics have been better dealt
with by many speakers than I ever could
have attempted. I shall deal briefly with an
area with which I was especially involved
and which may have great significance for
the future from the viewpoint of quantitative
analysis.

Transformation

Transformation goes back to the late 1920s
but it became practical with eukaryotes in
the late 1970s and the early 1980s. By the
mid-1980s, I was fortunate to be associated
with researchers at the Max-Planck-Institut,
Cologne, Germany. This effort resulted in
the application of in vivo transcriptional
gene-fusion technology to plants (Fig. 1.9).

In a similar manner, in vivo transla-
tional gene-fusion vectors can also be con-
structed in which there are no stop codons in
front of the reporter gene and the translation
initiation codon is removed, so the plant
host protein and the reporter gene fusion
would be facilitated. The results of these
experiments are illustrated in Figs 1.10–1.13
and the captions provide explanations.
Obviously transformation provides unique
opportunities to manipulate the genome and
facilitates new insights into how in plants
indigenous genes and foreign genes are
regulated and expressed.

The Future of Genetics

It is customary to finish presentations with
some predictions. Why I am shying away
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Fig. 1.9. The critical feature of this in vivo transcriptional gene-fusion vector is that the reporter (aph(3′)II,
luciferase or gus) has no promoter and it is fused to the right border of the T-DNA. The structural gene of
the reporter can be expressed only if it integrates behind a plant promoter that can provide the promoter
function. In front of the structural gene here, there are four nonsense codons to prevent the fusion of the
proteins with any plant peptide. (Based on oral communications by Dr Csaba Koncz.)

Fig. 1.10. Transformation of tobacco with transcriptional gene-fusion vector. Each Petri plate contains two
segregating transgenic progenies (in order to save labour) and the size and colour of the transformed plants
reflect the strength and time of function of the promoter. The selective agent, the antibiotic kanamycin,
bleaches the non-transformed plants. (G.P. Rédei and Yan Yao, unpublished.)



from general forecasts may be justified by a
few more quotes.

Erwin Chargaff, the discoverer of the
Chargaff rule, which was one of the corner-
stones for the construction of the Watson
and Crick model of the double helix, stated

in 1955, only 6 years before the nature of the
genetic code had been revealed:

I believe, however, that while the nucleic
acids, owing to the enormous number of
possible sequential isomers, could contain
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Fig. 1.11. The assumed mechanism of integration of the T-DNA into chromosome 4 of Arabidopsis and
induction of recessive mutation with normal transmission.

Fig. 1.12. Segregation of a T-DNA insertional mutation in Arabidopsis. (See Koncz et al., 1990.)



enough codescripts to provide a universe
with information, attempts to break the
communications code of the cell are
doomed to failure at the present very
incomplete stage of our knowledge. Unless
we are able to separate and to discriminate,
we may find ourselves in the position of a
man who taps all the wires of a telephone
system simultaneously. It is, moreover, my
impression that the present search for tem-
plates, in its extreme mechanomorphism,
may well look childish in the future and
that it may be wrong to consider the
mechanisms through which inheritable
characteristics are transmitted or those
through which the cell repeats itself as
proceeding in one direction only.

J.D. Watson’s letter to Max Delbrück on
22 March 1953 sounds quite surprising
today:

I have a rather strange feeling about our
DNA structure. If it is correct, we should
obviously follow it up at a rapid rate. On
the other hand, it will, at the same time,
be difficult to avoid the desire to forget

completely about nucleic acid and to
concentrate on other aspects of life.

(Judd, 1979)

The only remark I care to make is that I
feel very assured that the role of quantitative
genetics in basic biology and applied
sciences will increase.
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Introduction

Quantitative genetics (in its various
guises) has been the intellectual corner-
stone of plant breeding for close to 100
years. While the roots of Mendelian genet-
ics, and its rediscovery, are firmly in the
hands of plant breeders, it was Fisher’s
(1918) variance decomposition paper that
marks the modern foundation for both
quantitative genetics and plant breeding.
We are now embarking on the age of
genomics, and so it is reasonable to specu-
late on the implications of both partial and
whole genome sequences for quantitative
genetics. Likewise, the tools of modern
quantitative genetics have been developed
in four separate fields: plant breeding,
animal breeding, human genetics and
evolutionary genetics. Unfortunately, for a
variety of reasons, migration of information
between these fields has not been what it
should be. Thus, it is also an appropriate
time to enquire whether useful tools have
been developed in these other fields that
may be helpful to plant breeders of today
and the genomics-based breeders of the near
future.

Quantitative Genetics in the Age of
Genomics

It took just 100 years to move from the
rediscovery of Mendel to the complete
sequencing of a higher plant (Arabidopsis).
Preliminary analysis (Arabidopsis Genome
Initiative, 2000) of the Arabidopsis seq-
uence detected 25,500 genes, almost double
the number of detected Drosophila genes
(13,600) and of the same order as the most
recent estimates of the number of human
genes (25,000–40,000). Roughly 45% of all
detected Arabidopsis genes are present in
four or more copies, so that the 25,500
genes can be classified into roughly 11,600
protein types. While Arabidopsis offers a
key portal to the genomes of other higher
plants, because of their much larger size,
whole-genome sequences of most of the
major crops are unlikely to be forthcoming
in the near future. Although there is no
reason to expect that the basic set of protein
types will be any greater than around
12,000, the extensive evolutionary history
of polyploidization and segmental duplica-
tion in most higher plants (Wendel, 2000)
suggests that far more than the 26,000 or
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so genes of Arabidopsis may be present in
many of our major crops. While it may seem
obvious that genomic information (both
current and forthcoming) will have a major
impact on quantitative genetics, just how
will this information modify quantitative
genetics as currently practised and how
profound will the change be?

Classical vs. neoclassical quantitative genetics

In the classical (Fisherian) quantitative
genetics framework, an observed phenotype
(y) is regarded as the sum of genetic (g) and
environmental (e) effects plus an interac-
tion between genotype and environmental
values (g × e):

y = u + g + e + g × e (2.1)

where u is the population mean. In most
plant-breeding situations, this basic model
usually involves a further decomposition
of the environmental effects (for example,
into plot, block, temporal and/or location
components), but, for brevity, we ignore
these (easily introduced) extensions in our
discussion. Resemblance between relatives,
line-cross analysis and other approaches are
then used to estimate the variance compo-
nents associated with g, e and g × e and
these are used to predict selection response
and the expected values of individuals from
defined crosses and other useful quantities.
Classical quantitative genetics has been
enormously successful in serving the needs
of the plant-breeding community, but the
use of just a few statistical descriptors (the
variance components) to describe the com-
plex underlying genetics tends to leave an
uneasy feeling with many of my molecular
colleagues. One extreme view put forward
by some of these colleagues is that the age
of genomics ushers in the death-knell for
quantitative genetics, as we can move away
from a degree of statistical uncertainly to a
framework of known genes. While this view
is rather naïve (and often seems to be based
more on a general aversion to statistics
than solid reasoning), it is quite clear
that genomic information does usher in a

transformation of quantitative genetics. The
classical framework assumes we only know
individual phenotypes and the degree of
relationship between these individuals.
Genomic information allows for an
extended (or neoclassical) framework that
also incorporates genetic-marker informa-
tion. In particular, under the neoclassical
framework, genetic markers provide infor-
mation on the genotypic value of an
individual. If m denotes an observed
(often multilocus) marker genotype, the
basic model now becomes:

y = u + Gm + g + e + g × e (2.2)

where Gm is the genotypic value associated
with this genotype. The classical model
(Equation 2.1) is a standard random-effects
model, where our interest is in estimating
variances associated with g, e and g × e. In
contrast, the neoclassical approach leads to
a mixed model, with Gm regarded as fixed
effects. Genotype–environment interactions
involving Gm can be incorporated into
(Equation 2.2), as can potential epistatic
interactions between a particular marker
genotype and the background genes
(Gm × g). In the neoclassical framework, the
marker genotype effect Gm can be directly
estimated as a fixed effect. As we detail
below, genomic information may be able to
suggest particular genes for consideration
as candidates, so that Gm is the genotypic
value associated with the multilocus geno-
types at the candidate loci. The percentage
of the total phenotypic variance accounted
for by the candidates provides a direct
measure of their importance. The hope
expressed by my molecular colleagues
is that the variance accounted for by the
classical part of this model (g + e + g × e) is
small relative to the variance accounted for
by the marker information (Gm).

Even in situations where the known
genotypes do indeed account for a large
fraction of trait variance, the importance of
particular genotypes may be quite fleeting.
Genotypic values for particular loci are
potentially functions of the background
genotypes and environments, and hence
can easily change as crops evolve and as
the biotic (pests and pathogens) and abiotic
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(farming practices) environments change.
Further, mutation will generate new quanti-
tative trait loci (QTL), and a candidate locus
that works well in one population may be (at
best) a very poor predictor in another. Even
if only a modest number of QTL influence
a trait, then (apart from clones) each
individual is essentially unique in terms
of its relevant genotypes and the particular
environment effects it has experienced.
If epistasis and/or genotype–environment
interactions are significant, any particular
genotype may be a good, but not exceptional,
predictor of phenotype. Quantitative genet-
ics provides the machinery necessary for
managing all this uncertainty in the face
of some knowledge of important genotypes.
Indeed, variance components allow one to
quantify just how much of the variation is
unaccounted for by the known genotypes.
A critical feature of quantitative genetics
is that it allows for the proper accounting
of correlations between relatives in the
unmeasured genetic values (g).

We do not mean to paint an overly
harsh view of the importance of being able to
identify key genotypes. Rather, we simply
wish to introduce a little caution to dampen
completely unrestrained enthusiasm. It is
clear that there are enormous benefits to
being able to predict even a fraction of an
individual’s genotypic value, given a set of
genetic markers. For example, even a small
increase in the probability of fixation of
an advantageous allele during inbreeding to
form pure lines can have a dramatic effect.
Suppose an F1 population is segregating
favourable alleles at ten loci, and we first
inbred to fixation and then select among
lines. In the absence of selection, the proba-
bility of fixation of any single favourable
allele is 0.5. A quick binomial calculation
shows that a sample size of 2357 is required
to have a 90% probability that at least one
line contains all favourable alleles. If we are
able to increase the probability of fixation by
only 50% (to 0.75), only 40 individuals are
required, which is roughly a 60-fold reduc-
tion. If 20 favourable alleles are segregating,
the reduction is 3330-fold (from 2,414,434 to
725). Likewise, with known genotypes in
hand, searches for genotype–environment

interaction (G × E) are much more direct,
allowing for the possibility of searching for
major genes that are highly adaptive to
specific environments.

Genomics and candidate loci

Much of the above discussion of a more gen-
eralized view of quantitative genetics has
assumed that we know the genotypes (and
their effects) at a number of QTL. Given
that very few QTL have been fully isolated,
we are still far from achieving this goal.
At present, the genotypes (m) scored in
Equation 2.2 usually consist of anonymous
markers shown by statistical association
to be linked to QTL. Such marker-assisted
selection can result in a significant improve-
ment of the selection response, particularly
when the heritability of a character is low
(Lande and Thompson, 1990). Given that
even a QTL of large effect is typically only
initially localized to a region of around
20–50 cM, anonymous markers can easily
be 10–25 (or more) cM from the actual QTL.
Selecting directly on the QTL genotypes (as
opposed to linked markers) increases the
efficiency of selection, unless the marker is
very tightly linked to the QTL. The relative
efficiency of a single generation of selection
on linked markers (as opposed to directly
selecting on the genotypes) scales as (1–2c)2

or roughly 1–4c for a tightly linked marker
(where c is the recombination frequency
between the marker and QTL).

Hence, we would like to be able to at
least localize more tightly linked markers
and ideally, to screen potential candidate
loci directly to see if they are the QTL.
Direct tests of association with a small set of
candidates are a more powerful approach
than a genome-wide screen using a set of
anonymous markers. The difficult issue is
selecting the candidates in the first place,
and the hope (indeed, often the core assump-
tion) of genomics is that the full genome
sequence will, in time, greatly facilitate the
selection of candidate genes. A variety of
genomics tools (reviewed below) has indeed
been suggested to help in the search for
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candidates. At present, the use of these tools
is generally restricted by economic, rather
than biological, constraints. One of the major
trends expected over the next decade will be
to make these tools economically feasible for
just about any trait or crop of interest.

Basic genomic tools

Perhaps the single most useful tool is dense
marker maps. It is these maps that allow
for QTL mapping, association studies and
marker-assisted introgression, to name just
a few uses. The most obvious tool is the
whole-genome sequence. With the com-
plete sequence in hand (or even a partial
sequence highly enriched for coding seq-
uences), one can construct any number of
DNA chips. These microarrays containing
a large number of defined DNA sequences
can be used for screening the expression of
a large number of genes (via hybridization)
in particular tissues (expression-array
analysis), for probing a related genome for
homologous genes of interest, and for many
other interesting possibilities that we are
only beginning to consider. Besides faster
and cheaper sequencing, a major factor
facilitating future genomic projects is the
ability to use sequence homology to boot-
strap from a model system to a related
species. For example, we can use sequences
from Arabidopsis to probe for homologous
genes in related species, and any recovered
sequences can, in turn, be used to design
probes for even more distantly related
species. Given the tendency for many plant
genes to exist in large multigene families,
the advantage of a full genome sequence is
that all members of a particular family can
be used as probes, increasing the chance
of identifying at least one homologous
gene from a related species. Once again, any
recovered homologues can themselves be
used as probes for other family members
within the target species. Thus, centred
around a key model system, we can imagine
the search for homologous genes spreading
out in phylogenetic space like ripples on a
pond, reaching ever more phylogenetically
distant species.

Prediction of candidate genes

With a genomic sequence in hand, either
from the plant of interest or from a suffi-
ciently close relative, how can one use
this information to find possible candidate
genes? The most straightforward approach
is to search the genome for sequences with
homologies to known candidate genes from
another species. For example, a gene known
(say) to create variation in plant architec-
ture in maize (Zea mays L.) can be used to
probe related grasses. If homologues can be
found, association tests between trait values
and variation in the potential candidate(s)
can be performed. A more brute-force
approach is to first limit a QTL to a confi-
dence region (as small as possible) and then
use the genomic sequence from that region
either to suggest candidates for further
testing (see below) or, by simply screening
all the genes in this region using expression
arrays, to search for those whose expression
pattern is consistent with the character of
interest. Even in such apparently direct
expression studies, some caution is in
order. For example, a gene turned on in
seed tissue is certainly a candidate for yield,
but another gene expressed only in root tips
(and hence probably excluded from further
consideration) may have a more important
effect on yield if it increases the plant’s
ability to gather and store energy.

More generally, the hope is that the
DNA sequence itself may provide clues to
its potential as a candidate. The growing
field of proteomics has generated an exten-
sive catalogue of known protein motifs,
offering the possibility of making some
(albeit crude) deductions about the func-
tions of particular open reading frames,
such as whether the resulting protein spans
a membrane, is involved in transport, is
directed to a particular organelle, etc. Even
such partial information may be informative
in keeping or excluding potential candi-
dates. The hope for the future is that we shall
be able to read the regulatory sequences
to deduce the expression pattern of a gene
directly from its DNA sequence, in essence,
during the array expression studies in silico
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(via the computer). Again, the above-
mentioned caveat (that expression in very
different, and unexpected, tissues may have
a dramatic effect on the character of interest)
holds.

Transgenics

The tool from biotechnology that perhaps
excites breeders the most is the ability
to construct transgenics, importing a novel
gene into an organism. While transgenics
can be constructed for many crop species,
their phenotypes are rather unpredictable.
Insertion of a new sequence cannot cur-
rently be targeted to specific sites, but rather
is largely random, with the location of
insertion significantly influencing the level
of gene expression. Further, plants often
suppress multiple-copy genes, which can
have a further impact on a transgenic. Even
when these issues are resolved, it is clear for
the foreseeable future that transgenic tech-
nology is restricted to importing genes of
major effect. The success in improving a
character by importing a modest to large
suite of genes of smaller individual effects
(but perhaps a great cumulative effect) is
less certain, given the above concerns about
consistency of expression. However, this
could also work in the breeder’s favour in
that a gene of modest effect may have a
more dramatic effect than that expected due
to position effect. A further complication
is that the introduction of genes of large
effect (perhaps generated by using a high-
expression promoter on a gene of otherwise
modest effect) can often have significant
pleiotropic consequences for a number of
characters besides the target and hence can
reduce crop performance in other aspects.
Selection for lines possessing modifiers to
reduce any associated deleterious effects is
thus a key step in the improvement of an
initial transgenic line. Quantitative-genetic
machinery can suggest those lines with the
greatest potential for modifiers, for exam-
ple, by searching for lines with large Gm × g
interactions in favour of less deleterious
side-effects.

Fishing for useful variation in natural or
weakly domesticated populations

The area where genomics may eventually
offer the largest pay-off to breeders is in
the search for useful genes in natural
and/or weakly domesticated populations.
The source populations or species, from
which modern crops descend, harbour far
more genetic diversity than is present in the
limited set of highly domesticated lines
currently in use for food production. The
ability to localize genes of significant effect
and, subsequently, to introgress these into
cultivars without generating undesirable
side-effects on performance is a key aim of
breeders. As we detail in the next section, a
variety of useful approaches for searching
natural populations for genes of interest has
been developed in other fields of quantita-
tive genetics.

Useful Tools from Other Fields of
Quantitative Genetics

The broad arena of quantitative genetics
consists of four rather distinct fields – plant
breeding, animal breeding, evolutionary
genetics and human genetics (it could be
argued that tree breeders form a fifth field).
Although all four draw upon the basic foun-
dations of quantitative genetics, each has
rather distinct and often non-overlapping
literatures, and the information flow across
the fields has often been rather restrictive.
One consequence of this restricted flow
is that approaches for a specific problem
are often independently reinvented. A more
interesting consequence is that since practi-
tioners in each of the fields are faced with
unique issues and constraints, each has
developed a number of useful tools that
are (unfortunately) often not widely known
to outsiders. We (Lynch and Walsh, 1998;
Walsh and Lynch, 2003) have recently tried
to bring all these tools and approaches
together into a unified general framework
for quantitative genetics. Since many of
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these field-limited tools are both largely
unknown and yet of potential interest to
plant breeders, I conclude by briefly review-
ing a few of the more promising approaches
(especially those with applications at the
quantitative genetics–genomics interface).
Extension of some of these approaches, to
be of value to plant breeders, may require
some non-trivial modifications.

Plant breeding

For a start, it is useful to remind plant
breeders of some of the tools they routinely
use that are not well known (or at least
not widely appreciated) to geneticists out-
side of the field. As a consequence of having
to deal with a diversity of mating systems
(most importantly selfing) and sessile indi-
viduals, issues that plant breeders tend to
focus on more than other quantitative genet-
icists include the creation and selection
among inbred lines and their hybrids, G × E
and competition. Some important tools
have already migrated from plant breeders
to quantitative genetics as a whole. One
example is line-cross-based analysis (gener-
ation means, diallels), which has seen
an increasing use in evolutionary genetics.
Somewhat surprisingly, many quantitative
geneticists have been a little slow in draw-
ing upon the wealth of field-plot designs,
especially analyses for dealing with G × E,
that plant breeders have accrued. For
example, while additive main effects and
multiplicative interaction (AMMI) models
(Gollob, 1968; Mandel, 1971; Gauch, 1988,
1992; Gauch and Zobel, 1988; Zobel et al.,
1988) and biplots (Gabriel, 1971; Kempton,
1984) have become important tools for plant
breeders (as several chapters in this book
illustrate), they are generally unknown
outside the field. The correct formulation
for the covariance between relatives under
inbreeding (e.g. Cockerham, 1983) is another
important tool developed by plant breeders
that has remained largely unappreciated
(but see Abney et al., 2000).

Animal breeding

Animal breeders face designs involving
complex pedigrees, large half-sib or (more
rarely) full-sib families, long lifespans and
overlapping generations (many of these
same issues are faced, to an even greater
extent, by tree breeders). The machinery of
predicting breeding values by best linear
unbiased prediction (BLUP) (reviewed by
Henderson, 1984; Mrode, 1996; Lynch and
Walsh, 1998) and the estimation of variance
components by restricted maximum like-
lihood estimation (REML) (reviewed by
Searle et al., 1992; Lynch and Walsh, 1998)
have been developed by animal breeders to
address these concerns. BLUP/REML easily
allows for arbitrary pedigrees (through
specification of appropriate relationship
matrices) and for the estimation of a large
number of fixed factors. This BLUP/REML
framework is a very appealing one from a
genomics standpoint, as scored genotypes
of interest can be treated as fixed effects,
and complex (fixed and/or random) models
with both background genotypes and struc-
tured environmental effects can also be
introduced.

A second area that may be of interest
to plant breeders is the extensive work of
animal breeders on maternal effects designs
(e.g. Lynch and Walsh, 1998, ch. 23).
Although several of these designs are not
easily transferred to plant-breeding systems
(some are based on cross-fostering offspring),
they, none the less, are useful reading when
thinking about the importance of maternal
effects, a topic that often seems to be over-
looked by plant breeders. The widespread
availability of cloned individuals can greatly
facilitate the estimation of maternal effects,
and hence a determination of their impor-
tance. Recent theoretical work on the quanti-
tative-genetic implications of endosperm by
Shaw and Waser (1994) is a related topic of
interest.

Finally, a major push towards the use
of Bayesian methods of analysis is coming
from the animal breeders (e.g. Gianola and
Fernando, 1986). Just as likelihood methods
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replaced method-of-moments and other esti-
mators when they became computationally
feasible in the mid–late 1970s, a variety
of Markov chain Monte Carlo simulation
approaches (such as the Gibbs sampler) have
allowed Bayesian posteriors to be computed
for even very complex models (Geyer, 1992;
Tierney, 1994; Tanner, 1996). The very
appealing feature of a Bayesian analysis is
that a marginal posterior distribution incor-
porates all the uncertainties introduced by
having to estimate other parameters of less
interest. For example, a model that estimates
the additive genetic variance must also esti-
mate a number of other variance compo-
nents and fixed effects. The marginal poste-
rior for the additive variance naturally
incorporates all the uncertainty introduced
by having to estimate these additional
nuisance parameters. Bayesian analysis
provides a powerful framework for analysis
for the expected growing complexity of neo-
classical models.

Evolutionary genetics

As the search for potentially useful genes
moves to natural populations, machinery
from evolutionary and population genetics
may prove useful. The issues of concern to
evolutionary geneticists involve estimating
the nature and amount of selection on a
defined suite of characters and the popu-
lation genetics of evolution. Three useful
developments from this field may be of
interest to plant breeders.

First, methods for estimating the nature
of natural selection on any characters of
interest have been developed (Lande and
Arnold, 1983; Arnold and Wade, 1984a,b;
Schluter, 1988; Crespi and Bookstein, 1989;
Schluter and Nychka, 1994; Willis, 1996).
This machinery allows the breeder to esti-
mate the nature of natural selection on any
measurable suite of characters, separating
selection into direct and indirect effects
(due to selection on correlated characters).
A detailed understanding of the nature of

natural selection in either wild or domesti-
cated populations can provide the breeder
with valuable insight into characters that
can further improve performance.

Secondly, there is a rich literature from
population genetics dealing with detection
of selection from a population sample of
DNA sequences (reviewed by Kreitman,
2000). An interesting application of these
methods was the finding of reduced levels of
polymorphism (consistent with directional
selection) in the 5′ control region of the
teosinte-branched 1 gene involved in major
morphological differences between teosinte
(Zea mexicana L.) and domesticated maize
(Wang et al., 1999). With a collection of
candidate genes in hand, one can search for
signatures of selection in homologues from
natural populations. Much of the theory
underlying tests of selection follows from
the explosive development of coalescent
theory (reviewed by Hudson, 1991; Tavare
and Balding, 1995; Fu and Li, 1999), which
describes the genealogy (the distribution of
the times to a common ancestor) for a
random sample of a particular DNA
sequence from the population. There are
obvious extensions of this theory to deal
with issues of concern to quantitative
geneticists, such as estimating the degree of
relationship based on molecular data and
the fine-mapping of QTL using very tightly
linked markers (e.g. Slatkin, 1999; Zollner
and von Haeseler, 2000).

Finally, there has been considerable
progress in the theoretical analysis of finite
locus models (as opposed to the traditional
infinitesimal models routinely used by
breeders), and these developments are
reviewed in Burger (2000). In particular, the
response to selection when the underlying
distribution of genotypic (or breeding)
values is not Gaussian has received sig-
nificant attention (Barton and Turelli, 1987;
Turelli, 1988; Turelli and Barton, 1990,
1994). Such developments in finite-locus
models provide a useful framework for
predicting selection response when partial
genotypic information is available.
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Human genetics

The final field of quantitative genetics from
which plant breeders may wish to draw
upon is developments in human genetics,
where small family sizes and a lack of con-
trolled mating designs are common occur-
rences. Despite these obvious limitations,
human geneticists have been rather success-
ful at mapping genes, and some of their
tools may prove useful to plant geneticists,
especially when trying to isolate genes of
interest from natural or weakly domesti-
cated populations for which defined inbred
lines may not be available.

One powerful approach has been to
use sib pairs to map QTL (reviewed and
extended by Abel and Muller-Myhsok, 1998;
Monks et al., 1998; McPeek, 1999; Elston
and Cordell, 2001), and these approaches
can be applied to the offspring from single
plants in natural populations (although
suitable modifications would have to be
introduced to account for selfing). One com-
plication that both human geneticists and
plant breeders working with natural pop-
ulations face when attempting association
studies (between candidate genotypes and
trait values) is that false positives can be
created by population substructure (or strati-
fication). For example, if a marker is very
common in a particular subpopulation, and
that subpopulation also carries alleles for a
trait of interest at high frequencies, then, if
the population structure is not accounted
for, the marker can show an association with
the trait simply by being a predictor of
the population from which an individual
is drawn. Human geneticists account for
any potential population structure by using
the transmission–disequilibrium test (TDT),
which compares whether an allele is trans-
mitted or not transmitted from a parent to
an offspring showing the trait of interest
(Spielman et al., 1993; Knapp, 1999a,b).
Another powerful tool of human geneticists
is fine-mapping of genes by linkage disequi-
librium, using the historical recombinations
(as reflected in the decay of disequilibrium)
that occur between a tightly linked marker
and a gene of interest to fine-map that locus

(Hastbacka et al., 1992; Graham and Thomp-
son, 1998; Slatkin, 1999).

A final important tool with its roots in
human genetics is random-effects models to
map QTL in complex pedigrees (e.g. Amos,
1994; Gessler and Xu, 1996; Xie et al., 1998;
Yi and Xu, 1999, 2000). The idea behind a
random-effects model is simply to estimate
the trait variance associated with any par-
ticular genomic region, using anonymous
markers that span the genome. As with
BLUP/REML, this approach can accommo-
date both arbitrary pedigrees and numerous
fixed effects. It is certainly an approach to
consider for QTL mapping in many settings.

Conclusions

The age of genomics is a very exciting time
for quantitative geneticists. While the view
is often suggested that genomics will reduce
the importance of quantitative genetics, in
fact the opposite is true. Straightforward
modifications of classical quantitative-
genetic models provide the natural frame-
work for handling both phenotypic and
genotypic information. Equally important
for breeders to consider are powerful tools
developed in other fields of quantitative
genetics, only a few of which have been
discussed here.
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Introduction

Whether you regard it as a scientific
discipline or a supporting technology, bio-
informatics has gained enough status and
recognition to dominate scientific journals,
graduate programmes, careers and entire
research institutions. Bioinformatics could
be defined as ‘the storage, retrieval and
analysis of information about biological
structure, sequence, or function’ (Altman,
1998). This is a flexible definition: it relates
to information about virtually any bio-
logical enquiry – from molecular biology
to ecology, and it includes computational
biology – an area that sometimes defines
itself separately. The term bioinformatics,
however, is used most frequently in relation
to molecular biology or genomic research.
For example, the instructions to authors of
the journal Bioinformatics state that it is
‘a forum for the exchange of information
in the fields of computational molecular
biology and genome bioinformatics’ and
historical perspectives of bioinformatics
refer exclusively to sequence analysis and
other biomolecular research (Roberts, 2000;
Trifonov, 2000).

Should quantitative geneticists care
about bioinformatics? Regardless of how
you define bioinformatics, the answer is
‘yes’, and the purpose of this discussion is

to explain why. In supporting this statement,
I shall attempt to provide information about
current activities in bioinformatics that
might be of interest to researchers in quanti-
tative genetics and plant breeding. This dis-
cussion is organized into two sections: first,
a general overview of the major components
of bioinformatics, followed by a discussion
of bioinformatics as it relates to research in
quantitative genetics and plant breeding.

Bioinformatics is Characterized by a
Set of ‘Core Activities’

The broad definition of bioinformatics
chosen in the introduction allows for any
number of special niches within the field.
The narrower genomics-based interpreta-
tion of bioinformatics is, however, repre-
sented by a well-defined set of activities.
A suggested curriculum for bioinformatics
students (Altman, 1998) includes a list of 14
‘core bioinformatics topics’. I have modified
this list by merging these topics into a set
of eight general areas, discussed below. The
descriptions that follow are superficial,
intended only to orientate the reader
towards ‘classical bioinformatics’ and to
prepare for further discussion of the
relevancy of bioinformatics to quantitative
genetics and plant breeding.
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Pairwise sequence alignment

I find that the easiest example with which
to illustrate the importance of bioinform-
atics is to say: ‘here is a sequence; find some
sequences that are similar’. This example
can even spark the interest of an English
scholar or musician (both of whom may
be jealous of the extent to which biological
data are organized and publicly available).
Depending on the listener, some back-
ground explanations may be required:

• Sequences can be either DNA or pro-
tein. Since DNA codes for protein, it is
possible to match a protein sequence
with a DNA sequence by translating the
DNA into all possible proteins.

• You may have to search through all
known DNA sequences. Genbank cur-
rently contains more than 10 million
DNA sequences, made up of more than
11 thousand million base pairs.

• It might be best to search for protein
matches, since protein sequences are
more conserved than DNA sequences.
There are currently about 600,000 pro-
teins in Genbank.

• Matches need to be subjected to stat-
istical tests for significance: imperfect
matches are useful and interesting, but
you will see many partial matches due
to random chance. If you are looking
hard to find imperfect similarity, you
will need to tolerate the risk of finding
meaningless matches.

• Matching sequences may require intro-
ducing gaps. These gaps may occur
anywhere in either of the two
sequences being matched.

The above explanations usually suffice
to illustrate the size and complexity of the
problem. The listener is then assured that
the solution to this problem is in better
hands than mine and that many good algo-
rithms and computer tools are available. The
acronym BLAST (for basic local alignment
search tool) is easily remembered and it
is easy to demonstrate some Internet
BLAST tools that are readily available
(e.g. http://www.ncbi.nlm.nih.gov/BLAST/

or http://www2.ebi.ac.uk/blast2/). There are
many different BLAST programs and algo-
rithms (not all are called BLAST), and these
result from a large body of research into opti-
mization and statistical theory (e.g. Altschul
et al., 1997; Pearson et al., 1997; Agarwal
and States, 1998; Karplus et al., 1998).

Searching one query sequence at a time
is best done through Internet tools and
public databases. However, local search
capability is needed to search against special
or proprietary sequence sets or to submit
a large number of query sequences to the
same database. Since BLAST searching is a
fundamental activity in almost every bio-
informatics laboratory, it is useful to put the
computational scale and hardware require-
ments into perspective. Our laboratory
routinely searches expressed sequence tags
(ESTs), each being a partial DNA sequence
derived from a randomly cloned mRNA,
against a downloaded version of Genbank.
We use the program BLASTALL (Altschul
et al., 1997) on a Windows NT machine with
two 550 MHz Pentium III processors and
750 Mb RAM. With this configuration, a
search of 100 nucleotide sequences (average
length 800 bp each) against the non-
redundant protein database (600,000
sequences, containing 189,012,571 amino
acids) takes approximately 40 min. For
major updates of our database, six proces-
sors may be busy for most of a week.

Multiple sequence alignment, clustering
and phylogenetic inference

When first encountered, the concept of mul-
tiple sequence alignment may seem like an
extension of pairwise sequence alignment.
These two processes, however, exist for
entirely different reasons. Pairwise align-
ment is usually used in conjunction with
a search for identity and is fine-tuned to
be extremely fast and efficient. Multiple
alignment is performed after a set of similar
sequences have been identified and the user
is concerned with finding the best possible
alignment that satisfies the minimum num-
ber of alterations from one sequence to the
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next. This is normally done with protein
sequences, but can also be performed with
nucleotide sequences. Multiple alignment
is used primarily to extract information
about gene evolution, to perform hierarchi-
cal clustering and to infer phylogeny. The
theory and algorithms developed for align-
ment, clustering and phylogenetic inference
are extensive, and will not be discussed
here. Recent reviews of this area are pro-
vided by Doolittle (1999), Doyle and Gaut
(2000) and Phillips et al. (2000). Clustering
and phylogenetic inference are not restric-
ted to DNA or protein sequence, and much
of this area will already be familiar to most
classical and quantitative geneticists.

One of the applications of multiple
sequence alignment is the discovery of con-
served and variable regions within a gene.
A highly conserved region of amino acid
sequences can indicate an active site within
the resulting three-dimensional protein.
Thus, sequence alignment is a useful com-
plement to studies of protein structure and
function. The alignment of DNA sequences
is less useful for this task, because nucleo-
tide changes can have neutral effects. Nucle-
otide alignment, however, can be very useful
for the discovery and design of molecular
markers. Our laboratory, in collaboration
with Dr Diane Mather of McGill University,
is using alignment of DNA sequences from
grasses for the discovery and development of
molecular markers in oat (Avena sativa) and
barley (Hordeum vulgare). On a much larger
scale, studies of DNA sequence alignment
have been used to develop a set of 1.4 million
single nucleotide polymorphisms (SNPs),
which have been placed on the human
genome map to facilitate gene discovery
through linkage disequilibrium (Interna-
tional SNP Map Working Group, 2001).

Fragment assembly and mapping

Fragment assembly also shows superficial
similarity to both pairwise and multiple
sequence alignment, but, again, serves a
different purpose. In this case, the purpose
is to assemble fragments of DNA sequence

into contiguous strands. The assumption is
made that all fragments come from the same
organism, or at least from organisms similar
enough for base changes to be rare. Frag-
ment assembly involves the following steps:

• Removal of unwanted sequence (clon-
ing vector or poor-quality sequence).

• Locating pairwise overlaps.
• Resolving overlaps to build larger

contiguous strands (contigs).
• Improving alignments in overlapping

regions by introducing gaps.
• Manual verification and editing.
• Generation of a consensus sequence.

Depending on the application, the manual
verification step can be critical. If raw
sequencing files are available (chromato-
grams showing evidence for each base),
these are used to resolve any positions
where ambiguity remains.

Fragment assembly is the final step in
the generation of complete genomic sequ-
ences. In organisms where this has been
possible, sequence-based fragment assembly
follows the preliminary work of genetic and
physical mapping. Genetic mapping of mol-
ecular polymorphisms is familiar to many
researchers in plant genetics, but the ability
to build physical maps of large fragments has
been limited to model plant organisms with
small genomes. Physical mapping, such
as that performed in the public human-
genome-sequencing effort, is achieved by
dividing the genomic sequence into large
(100–200 kb) fragments called bacterial
artificial chromosomes (BACs). These BACs
are digested and separated by electrophore-
sis. Overlapping BACs can be identified
because they produce significant numbers of
identically sized restriction fragments. The
assembly of BAC sequences based on over-
laps is analogous to sequence-based frag-
ment assembly, but does not require any
sequence data. Once a BAC assembly is pro-
duced, a set of BACs is chosen to represent
a minimum tiling pattern. These BACs are
digested into smaller fragments for sequenc-
ing and, finally, sequence-based fragment
assembly.

Sequence-based fragment assembly is
not limited to complete genome-sequencing
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projects. It also finds use in smaller-scale
sequencing projects, such as gene character-
ization and map-based cloning. Another
application has been in the creation of
non-redundant sets of ESTs. Most ESTs
represent partial genes, but many ESTs are
small and poorly characterized. Large-scale
fragment assembly provides an automated
method to identify EST fragments that
belong to the same molecule, and then to
generate longer consensus sequences that
may represent full genes. We use this
method to remove redundancy from our
EST collections prior to building expression
arrays. By comparing the length of consen-
sus EST sequences with the length of similar
proteins (found using BLAST), we are able to
identify those that represent complete gene
sequences.

Feature prediction and annotation

Feature prediction can refer to the identifi-
cation of genes within complete genomic
sequences or to the identification of motifs,
introns, promoters and other features that
are diagnostic of gene or genome function.
Annotation means recording these identifi-
cations in a database. Annotation is also
used in general reference to the assignment
of putative gene function. Genes are charac-
terized by open reading frames (ORFs) –
stretches of DNA without stop codons.
However, since eukaryotic genes are inter-
rupted by introns, many true genes are
represented by ORFs that are shorter than
spurious ORFs. As any statistician will rec-
ognize, this is especially true when dealing
with a global search through a large set of
data, such as the human genome sequence.
Thus, gene identification requires addi-
tional criteria, such as similarity to known
genes or the presence of diagnostic features
(e.g. Guigo et al., 2000).

Protein structure, modelling and dynamics

Due to increasing interest in ‘proteomics’
and ‘metabolomics’ as the logical succes-

sors to large-scale genomics initiatives, it is
inevitable that this area of bioinformatics
will become increasingly important. Many
additional topics, such as monitoring of
protein expression patterns using two-
dimension gels, are not captured by this
heading, but should be expected to comple-
ment efforts to study protein structure and
function. Likewise, most of the bioinforma-
tics tools already mentioned as components
of genomics will continue to be important
in the area of proteomics.

Despite a large amount of interest and
effort, bioinformatics has not yet been able to
accomplish what some would see as its most
important goal: the ab initio prediction of
tertiary protein structure. Accurate predic-
tions of protein structure can only be
achieved by tedious experimental proce-
dures, although bioinformatics plays an
important role in the visualization of these
experimental predictions and in the dis-
covery of implications. Computer-based
modelling of tertiary protein structure is
limited to predicting the effects of small
changes (site-directed mutagenesis) or to
modelling the structure of a protein that has
significant sequence homology to a protein
with a known structure (a procedure known
as threading). Some of the limitations in
predicting protein structure may be over-
come through brute-force computational
power, which may be delivered by massive
networks of interconnected computers.

Another application of bioinformatics is
in understanding pathways and metabolism.
Existing knowledge of metabolic pathways
has developed to the extent that very few
researchers can be expected to have compre-
hensive background. Information about bio-
chemical pathways is available at databases
such as KEGG (http://star.scl.genome.ad.jp/
kegg/) and EXPASY (http://expasy.cbr.
nrc.ca/cgi-bin/search-biochem-index).
Many seemingly unrelated pathways can
interact through common precursors or
products, and efforts to modify metabolic
processes need to consider both the optimal
target (e.g. a rate-limiting step) and the possi-
bility of indirect effects. Information about
gene expression that is currently being
developed through genomics or proteomics
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needs to be cross-referenced to appropriate
steps in metabolic pathways, so that
researchers in diverse fields can access and
interpret the implications. Through gene
annotations, it is usually possible to link
with information about metabolic process.
For example, enzyme sequences in the
SwissProt database (http://www.expasy.ch/
sprot/) are annotated using a standardized
enzyme classification (EC) system that can
be cross-referenced to known steps in meta-
bolic pathways. Since protein interactions
are the basis of metabolic pathways, there
is hope that bioinformatics will play an
additional role in the detailed analysis of
pathway dynamics and, perhaps, the discov-
ery of previously unknown processes. The
need for detailed records of protein inter-
actions is recognized in the development
of the Biomolecular Interaction Network
Database (BIND) (Bader et al., 2001).

Support of laboratory biology

Laboratory support may appear to be the
most mundane task in bioinformatics, but
it is essential for the operation of high-
throughput strategies, such as sequencing
and studies of gene expression. For the
bioinformaticist engaged in laboratory
support, the resulting interactions with
biologists can be a rewarding diversion
from the task of solving informatics
challenges. Laboratory support can range
from solving day-to-day computer problems
to building new software to collect, store
and analyse data.

A major task in laboratory support has
arisen from the technology of microarray
expression studies (discussed later). These
experiments have the capability to rapidly
generate hundreds of thousands of data
points. Each datum must be identified by
meaningful relationships to other databases,
and each can be associated with a specific
region of a large graphical image. Unlike
gene sequencing (where the original image
is often discarded), microarray images may
be required at a later date to help validate a
discovery. Since important information may

be derived through combining information
from multiple experiments, there is a need to
preserve all data in a common environment.
This need serves to introduce the next
subject.

Design and implementation of databases

Databases vary in scope and in scale, and
the designer must consider whether the
database will satisfy a specific local need or
whether it is intended to be served publicly
on the Internet. Major public databases
require consideration of relevancy, scope,
database structure and interface, as well as
curation and maintenance. The choice of
database software or programming language
can be influenced by these factors, but may
also be influenced by available resources
and expertise. The decision may also be
based on an existing software licence or
the presence of a related database that uses
specific software. For example, the plant-
genome databases sponsored by the US
Department of Agriculture (http://ars-
genome.cornell.edu/) use the ACeDB
format; therefore, different plant genome
databases can share a common set of tools
and benefit from cumulative expertise.

Smaller, local databases require most
of the considerations described above, but
they may not require the programming of a
special interface. Our in-house EST database
is implemented in Microsoft Access. This
choice was made because Access provides a
simple interface for database design, and
because it requires minimal maintenance.
Thus, a single person with limited program-
ming expertise can develop and maintain a
database. The Access software also provides
a simple interface for users to query the
data in sophisticated ways. Rather than
providing predefined queries, all of our
genomics users take a short course that
enables them to understand the database
structure and learn to develop their own
queries using this visual interface. Disad-
vantages of this system are that it is limited
to use on a local network and it does not
scale well.
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Mining data from heterogeneous sources

The number of Internet databases related
to molecular biology and genomics is
impressive. Maintaining a complete listing
is a bioinformatics challenge in itself. Each
year, the journal Nucleic Acids Research
devotes its first issue to coverage of
new database developments, including an
updated directory of databases. The current
directory (Baxevanis, 2001) lists almost 300
databases.

Some databases (e.g. the National Cen-
tre for Biotechnology Information (NCBI)
and European Molecular Biology Laboratory
(EMBL)) attempt to provide ‘one-stop bio-
informatics shopping’. In these two exam-
ples, public data from diverse sources are
collected and maintained in a standardized
format that can be accessed directly through
a common set of tools. The NCBI data are
accessed though a tool called Entrez, whereas
the EMBL databases are accessed using a
sequence retrieval system (SRS). Each of
these systems has different strengths. For
example, complex data-mining questions
can be automated in SRS using the PERL
scripting language, whereas Entrez is well
designed for simple Web-based queries where
the user wants to be presented with results as
well as links to related information.

Not all questions can be answered from
one data source, so the bioinformaticist must
be familiar with many diverse and hetero-
geneous databases. In some cases, it is pos-
sible to communicate automatically with
multiple databases. For example, relational
databases that support a common interface
called open database connectivity (ODBC)
can be addressed simultaneously using the
structured query language (SQL) to filter
information based on appropriate relation-
ships between tables. It is even possible to
make tables from multiple databases appear
as though they belong to a single database.
However, these approaches depend on
knowledge of the underlying data structure
in both databases and on identifying con-
sistent fields in all databases. Sometimes
a bioinformaticist must resort to creative
strategies, e.g.

• Retrieve data from database no. 1 to text
file.

• Parse text file to transform field con-
tents and remove unnecessary fields.

• Retrieve data from database no. 2 to text
file.

• Compare text files to identify common
elements.

This general strategy can be implemented
using a scripting language (e.g. PERL) to
produce and parse intermediate text files.
An alternate strategy is to build a local
relational database using subsets extracted
from other databases. This strategy results
in an efficient local database that can serve
more than one purpose.

Why should Quantitative Geneticists
Care about Bioinformatics?

Quantitative geneticists analyse informa-
tion about biological structure and function.
This makes them computational biologists
and, in a broad sense, bioinformaticists.
Plant breeders, often quantitative geneti-
cists themselves, are also actively engaged
in bioinformatics. It may be possible to run
a successful breeding programme without
a computer, but most breeders need to per-
form extensive record-keeping, pedigree-
tracking and statistical analyses. The pur-
pose of this section is not to extend or argue
about the definition of bioinformatics, but
rather to discuss the importance of ‘classi-
cal bioinformatics’ (as described in the first
part of this chapter) in traditional areas of
quantitative genetics or plant improvement
and to emphasize the potential role of
quantitative geneticists in areas of bio-
informatics related to genomics.

Quantitative geneticists are
bioinformatics experts

There is some distinction between com-
putational biology and bioinformatics, the
former being concerned with computational
theory and algorithms and the latter with
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information systems and data mining. How-
ever, the distinction is blurred, since most
practitioners require knowledge of both
areas. Claverie (2000) believes that both
areas have strayed from being bona fide
theoretical branches of molecular biology
to being merely observational, ‘phenomeno-
logical’ approaches. In supporting this,
Claverie (2000) describes the ideal bio-
informaticist as a theoretical biologist,
analogous to the theoretical physicist, who
strives to capture the essence of molecular
mechanisms within abstract models. In this
sense, the quantitative geneticist already
seems to be the ideal bioinformaticist.

A good example of how bioinformatics
can be used in the development of biological
theory is provided by Mendoza et al. (1999,
2000). These authors have developed and
tested mathematical models to capture what
is known about the genetic control of flower
morphogenesis and root-hair development
in Arabidopsis thaliana. These models lead
to predictions of possible effects of external
stimuli or altered allelic states. Although
this is a mathematical model of develop-
mental circuitry, rather than a genetic analy-
sis of a population of phenotypes, it makes
me believe that statistical geneticists possess
some of the expertise that is needed to
understand the complex interaction of genes
at a molecular level. This could include the
ability to develop and apply abstract models
based on biological assumptions, as well
as the ability to understand and account for
phenotypic variance, population structure,
epistasis, genotype–environment inter-
action, and other statistical realities.

Our understanding of biological pro-
cesses comes from observing natural or
altered biological systems. The approach of
the molecular biologist is often to dissect a
single component, whereas the approach of
the quantitative geneticist is to discover a
model that explains multiple components.
One of the roles of bioinformatics in this
process will be to give the quantitative genet-
icist better access to discrete components
(genes) from which to build or test complex
models. These models might test existing
theory about a metabolic process within a
background of genetic and phenotypic noise,

or they might lead to the discovery of which
genes or pathways are most crucial in the
development of an ‘economic phenotype’.

Quantitative genetics is becoming
quantitative genomics

Since the narrow-sense definition of bioin-
formatics seems restricted to genomics, it is
worth reflecting on the difference between
‘genetics’ and ‘genomics’. Genetics is tradi-
tionally defined as the study of inheritance,
whereas the term genomics was invented
to describe high-throughput or large-scale
studies of genome sequence and gene
structure. Genomics was then subclassified
into ‘structural’ and ‘functional’ genomics.
At this point, I become confused, especially
by the difference between genetics and
functional genomics. However, one inter-
pretation is this:

• Genetics means inferring the presence
of genes or allelic state based on
phenotype.

• Structural genomics means describing
the structure of the genome, as well as
the location and structure of genes.

• Functional genomics means studying
how known genes affect phenotype.

These differences may not be arbitrary, but
they invite crossover. The identification of
quantitative trait loci (QTL) and measure-
ment of QTL effects are considered to be
‘statistical genetics’, but these activities
have elements of both structural and func-
tional genomics. Efforts to place candidate
gene loci on molecular maps are driven
partially by the desire to find potential
associations with QTL. Efforts to merge
genetic maps are being driven partially
by the desire to provide additional
evidence for the location and effect of QTL.
Map-based cloning is a direct route from
genetics, through structural genomics, to a
functional-genomics result.

In the next two sections, I describe
two areas that I believe will be important
crossover points between statistical genetics
and functional genomics. Both of these areas
will require bioinformatics expertise.
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Molecular markers, developed through
bioinformatics techniques, can identify

polymorphism in functional gene candidates

We are currently witnessing the completion
of genome sequencing in several model
organisms, with promise that complete sets
of annotated genes will soon be available.
Explaining this to a lay person is much
easier than explaining the subtleties of QTL
analysis or the complexities of measuring
heritability. But, apart from notable results
from a handful of transformation events, our
food supply is still ensured by the efforts of
breeders and quantitative geneticists. Most
scientists involved with germ-plasm devel-
opment probably agree that we shall always
rely, to some extent, on the measurement
and manipulation of natural genetic vari-
ability. This is not a defence of traditional
territory, nor is it a sales pitch for molecular
marker-assisted selection. It is an attempt to
establish a proposition that important genes
show natural variability, and that under-
standing the cause of that variability can be
interesting and useful. Whether this infor-
mation is used for direct genetic manipula-
tion or to enhance traditional selection is
not the concern of this discussion.

The discovery and characterization of
natural genetic variability can follow two
routes: the direct measurement of gene
expression (as described in the next section)
or inference from phenotypic measurements
in a recombinant population. If you can
breed for a trait, then the genes must be
different. Despite the breeder’s dogma that
allele combinations are nearly infinite, the
success of phenotypic selection implies
an important role for a finite set of genes.
For argument’s sake, assume that there are
30,000 genes in a typical plant. We may
soon have names for most of these genes but
limited understanding of how they work or
interact. Through knowledge of gene func-
tion or through other experimental evi-
dence, the number of genes with potential
to influence a given trait might be reduced
to several hundred. If a tool-box of readily
scored markers were available for this set
of candidate genes, the breeder/quantitative
geneticist could rapidly accumulate data on

associations between genes and phenotype.
The power of this strategy would be
enhanced by accumulating and coanalysing
data from many populations and perhaps
many different species. The advantage of
basing this analysis on gene candidates
rather than on arbitrary markers is that
linkage disequilibrium is expected. This
is of benefit within species because it may
permit the assumption of common parental
QTL alleles. For analysis across species, it
may permit the assumption of common QTL
without the need for detailed mapping of
chromosomal rearrangements.

Before straying too far on an argument
that can be made better by others, I shall
return to the topic statement: that the mark-
ers required for QTL-based gene discovery
can be developed through bioinformatics
techniques. Targeting a marker towards a
specific gene requires, at the minimum, a
partial gene sequence. Many markers have
been generated by designing a semi-arbitrary
pair of PCR primers from an EST sequence.
Such markers usually rely on serendipitous
polymorphism at or between priming sites.
Recently, a large set of gene-targeted markers
has been developed in maize by designing
primers to flank simple sequence repeats
that have been discovered within coding
sequences (see http://www.agron.missouri.
edu/ssr.html). Such markers are more likely
to identify polymorphisms than are ran-
domly targeted PCR primers. A recent report
(Cato et al., 2001) describes a new approach
for the identification of molecular markers
based on EST sequences. This technique
combines a gene-specific primer with a
randomly targeted restriction site that may
be outside the coding region. This may prove
to be an extremely useful method for gener-
ating gene-specific polymorphisms based
on a conserved primer that can function
across multiple species. Any of the above
approaches can be enhanced by comparison
of gene sequences across a variety of alleles,
both within and across species. Interest-
ingly, all three different types of sequence
alignment introduced at the beginning of
this discussion are useful in this approach:
pairwise sequence alignment (to identify
and collect a set of orthologous sequences),
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sequence assembly (to assemble partial
sequences) and multiple sequence align-
ment (to build consensus and identify
conserved or variable regions). Other bio-
informatics tools that are important in this
process include primer design, identifica-
tion of genes based on metabolic role, and
automation of repetitive steps in the collec-
tion and alignment of sequences.

Bioinformatics and quantitative genetics
facilitate the understanding of gene

expression patterns

Some of the most important tools currently
available in functional genomics are micro-
arrays (e.g. Schena et al., 1995), oligonuc-
leotide ‘gene chips’ (Lipshutz et al., 1995)
and serial analysis of gene expression
(SAGE) (Velculescu et al., 1995). While
different in procedure, these techniques
achieve a common objective: the measure-
ment of mRNA samples to identify levels or
patterns of gene expression. To the quanti-
tative geneticist, an mRNA sample is simply
a phenotype. Despite the fact that each
different mRNA traces to a specific gene,
the entire collection of mRNA levels,
captured at a specific moment in time,
is analogous to a set of quantitative trait
components. Like quantitative trait compo-
nents, each mRNA can vary independently
or (more probably) it can be correlated with
other mRNAs. Also, like trait components,
each mRNA level is subject to environ-
mental variance, which can disguise its
true genetic value. Finally, like trait compo-
nents, each mRNA is more simply inherited
than is the composite trait.

The analogy described above is not
coincidental, but there are some notable
differences. Most expression studies have
focused on a single individual, with pheno-
types measured across different environ-
ments, across time or at different stages of
development. Quantitative-genetic analysis,
while conducted across multiple environ-
ments, is seldom conducted across time
or across different stages of growth. How-
ever, quantitative genetics almost always

incorporates multiple individuals and,
hence, multiple allelic combinations.
Despite these differences, it seems obvious
to me that quantitative genetics and expres-
sion studies are attempting to accomplish
similar goals: both are measuring changes
in gene expression, gene interaction and
gene–environment interaction. Methods of
analysis are also similar. Typical methods
of microarray analysis include principal-
component analysis and hierarchical clus-
tering. These methods seek to identify genes
that are coregulated in a similar pattern
across time or environment. Expression
studies are often simplified by the absence of
allelic variability, but they are complicated
by the introduction of a large number of
measured components. There is no reason
why microarrays cannot be used to investi-
gate patterns of gene expression in segregat-
ing populations; however, the analysis of
such experiments could be challenging. I do
not know how many quantitative geneticists
have already been attracted to the challenge
of microarray analysis, but I hope and
predict that this will be an important area
of crossover.

There is an additional use for micro-
arrays, which could provide another cross-
over point between quantitative genetics
and genomics. This is the potential use
of oligonucleotide arrays in the high-
throughput screening of marker poly-
morphism (e.g. Radtkey et al., 2000). The
ability to score large segregating populations
at potentially thousands of polymorphic loci
could add new dimensions to the analysis
of QTL. With this application comes an
urgent need for high-throughput data
handling and data analysis.

Further integration of statistical genetics and
genomics requires public databases with

structured population and phenotypic data

Much of genomics is now concerned
with the discovery of associations between
genotype and phenotype. With technology
to quickly screen alleles at candidate gene
loci, the limiting factor becomes phenotype.
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Furthermore, with large numbers of data
points collected under a variety of experi-
mental conditions, the correct analysis and
interpretation of results are also limiting
factors. It is predictable that the skills of
the quantitative geneticist could be in high
demand. But, in my opinion, the field
of quantitative genetics has always been
lacking in systems to organize and mine
primary research results. Anyone who has
attempted to reanalyse historical data
knows that half of the job can be locating
and assembling the original data. There may
even be a sentiment of data ownership in
this field that has been largely shed in pub-
licly funded genomics initiatives. Some-
times this is justified: the correct interpreta-
tion of quantitative data requires knowledge
of factors that go beyond the data points, so
the data originator has a continued respon-
sibility to ensure correct interpretation.

Because of the success of large, public
data banks in genomics, it seems worthwhile
to entertain the possibilities of parallel
databases for population and quantitative
genetics. Such databases are not absent. For
example, in databases such as Graingenes
(http://wheat.pw.usda.gov/), it is possible to
find the phenotypic data sets from which
QTL inferences were made. However, a large
amount of data is not available or is not
structured in a way that permits systematic
mining of all information related to a given
question. Consider the hypothetical prob-
lem of exploring the effect of three poten-
tially epistatic genes. One would want to
collect all relevant phenotypic data from
every population where those genes were
characterized or where extensive mapping
had taken place. We may still be at a stage
where this can be done through contacts in
the research community, but it is difficult
for a new researcher or graduate student to
assemble this type of data. Many QTL data
sets are approaching 10 years of age and,
due to statistical limitations, it is unlikely
that they will provide new information by
themselves. However, when combined with
other data or when interrogated with a
specific hypothesis, they could continue to
provide valuable research results.

The difficulty of standardizing quantita-
tive data is obvious. Buying acceptance of
a specific data structure or a specific data
warehouse is equally challenging. However,
similar challenges are being faced by the
DNA microarray community (Brazma et al.,
2000). As with genome-sequence databases,
there will probably be many different public
microarray databases, each sharing and
exchanging data. Unlike sequence data,
however, microarray data originate from a
large variety of very different experiments
and are valuable only when the experimen-
tal conditions are known. In order for data
to be exchanged in a meaningful format,
standards must exist. To this end, the inter-
national community has formed the Micro-
array Gene Expression Database collabora-
tive group (http://www.mged.org/), which
meets annually to share information and
gather consensus. This collaboration con-
tains five working groups, addressing every-
thing from data standards to user interface.

Do quantitative geneticists require this
level of organization? Are ‘traditional’ quan-
titative data valuable enough to be preserved
and organized in a public repository? Some
would argue that the intensity of bio-
informatics activity in the field of genomics
is merely a result of overgenerous funding
and that traditional scientists cannot afford
the luxury of public institutions with dozens
of curators and hundreds of computer pro-
grammers. Whatever the reason, the copious
bioinformatics activity that has surrounded
genomics research has created a wonderful
arena of public information, which should
be envied and imitated by researchers in
other fields.

Summary and Conclusions

The term ‘bioinformatics’ covers a broad area
of research and practice. When restricted to
genomics, bioinformatics is characterized
by a set of core activities, such as sequence
alignment, gene prediction, design of
databases and data mining. These bio-
informatics activities are essential for the
development of an understanding of gene
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structure and function. Although these
activities seem to exclude research in classi-
cal quantitative genetics, there are inevita-
ble crossover points. Quantitative genetics
will look towards genomics for information
to develop more accurate, precise and
biologically meaningful models. Genomics
will look towards quantitative genetics to
develop and validate hypotheses involving
complex gene interaction. Bioinformatics
will play an important role in facilitating
this crossover.

Why should quantitative geneticists
care about bioinformatics? In this discus-
sion, the following reasons have emerged:
first, because bioinformatics contains useful
tools and concepts (core activities) that
can be applied in quantitative genetics;
secondly, because bioinformatics is an area
where the expertise of the quantitative
geneticist may be required; thirdly, because
genomics and genetics are both becoming
high-throughput, information-rich fields
with common objectives and a common
need for bioinformatics expertise. Finally,
because of the public nature of large-scale
genomics projects, the bioinformatics com-
munity that works in this area has pioneered
a highly successful network of information
resources that go far beyond simple data
warehouses. Other research communities,
including the plant-breeding and quantita-
tive-genetics communities, may benefit from
this example.
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4 QTL Analysis: Problems and
(Possible) Solutions

M.J. Kearsey
School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK

Introduction

Many characters of central importance
to human health, food production and
evolutionary-cum-environmental biology
are quantitative in nature, being under the
control of several genes plus the environ-
ment. Such traits include hypertension,
osteoporosis and behaviour in humans,
yield and quality in our crop plants and
farm animals and competitive ability and
fitness in organisms in the wild (Kearsey
and Pooni, 1996). In the modern age of the
transcriptome, we can add gene expression
level, as determined from expression
arrays, as an archetypal quantitative trait
in that it shows variation at many genes and
is affected by variation between samples,
between genetically identical individuals
and across environments.

Despite their central economic, medical
and social importance, these traits are diffi-
cult to study because the phenotype does not
easily provide an insight into the genotype,
unlike most simple single-gene traits with
major effects. None the less, considerable
theoretical and experimental progress has
been made in the past 80 years in measuring
the heritability of such traits, predicting
their direct and correlated responses to
selection and optimizing breeding strategies
for their improvement in crop plants and
farm animals.

It is now just 100 years since the redis-
covery of Mendel’s work and over 80 years
from Fisher’s groundbreaking paper provid-
ing a methodology for understanding quanti-
tative traits (Fisher, 1918). During the last
century, there was an almost exponential
growth in our knowledge and understanding
of genetics, which led, appropriately, to the
unravelling of the complete human genome
sequence in February 2001 (Wolfsberg et al.,
2001). However, despite these develop-
ments, our understanding of the genes
underlying the control of quantitative,
polygenic traits is little further advanced
than it was when Fisher wrote his seminal
paper in 1918. We are able to estimate the
statistical effects as means, variances and
covariances of groups of genes, but we know
very little about the nature of the individual
polygenes that underlie the traits (Falconer
and Mackay, 1996; Kearsey and Pooni, 1996;
Lynch and Walsh, 1998).

Although it is clearly not essential to
understand the nature of polygenes or quan-
titative trait loci (QTL) to estimate herita-
bility or predict selection response, it would
be interesting and intellectually satisfying to
have some sound understanding of the indi-
vidual genes involved. Indeed, such knowl-
edge may have a profound influence on the
way we tackle theoretical and applied prob-
lems related to quantitative traits. So what
sorts of questions remain to be answered?
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1. How many genes are involved in any
given trait and what are the distributions of
their effects? For many traits, such as grain
yield or individual fitness, it would seem
likely that most genes, to some extent, affect
the trait. But what about crop quality or
human hypertension and intelligence? Are
there just a few genes that have a major effect
and many more whose effect is individually
minor and, if so, how few ‘major’ genes are
there? Answers to such questions would be
valuable to breeders optimizing selection
strategies and to pharmaceutical companies
attempting to find drugs for genetic diseases.
2. What is the nature of the dominance
and epistatic properties of these genes and
how do they interact with the environment?
Answers to such questions will prove very
useful to those trying to understand the
nature of heterosis (hybrid vigour) and
inbreeding depression and how best to
exploit it (see Coors and Pandey, 1999). They
also impinge on pharmacogenomics.
3. What type of genes are they? Are they
largely structural or regulatory and, if the
latter, how wide is their sphere of influence?
Are they allelic variants of well-known
genes or do they belong to that large number
of open reading frames for which no func-
tion has yet been assigned? To obtain this
level of understanding, it is essential that
we unambiguously identify individual poly-
genes and study them at the sequence and
transcriptional level.

The Problems

To obtain answers to all these questions,
we require fairly accurate gene location
and identification and, for much of the
past 10–15 years, this has depended on QTL
mapping in segregating populations, such
as F2s, back-crosses, recombinant inbred
lines (RILs), doubled haploid (DH) lines or
natural populations (Tanksley, 1993). This
approach has been made possible by the
availability of cheap and simple techniques
to identify the extensive natural poly-
morphism at the DNA level, the so-called
molecular markers, such as microsatellites,

restriction fragment length polymorphisms
(RFLPs), amplified fragment length poly-
morphisms (AFLPs), etc. Following the
mapping of these molecular ‘framework’
markers, it is then possible to locate the
QTL through their genetic association
with particular markers during meiosis, as
observed in their progeny. A large number
of statistical approaches have been dev-
eloped to attempt to locate QTL by such
methods and we have now probably
reached the point where little extra preci-
sion can be obtained (Lynch and Walsh,
1998). These approaches have been adopted
widely with considerable success, but they
have many problems associated with them
that cause them to be of little use in answer-
ing the detailed questions raised above. So
what are these problems?

First, and most importantly, QTL loca-
tions obtained from segregating populations
have very large confidence intervals (CIs).
These CIs are seldom less than 5 cM and
often > 30 cM (Van Ooijen, 1992; Darvasi
et al., 1993; Hyne et al., 1995). Given that a
typical chromosome is about 100 cM long,
such intervals amount to between 5% and
more than 30% of a chromosome. A typical
result obtained by computer simulation is
shown in Fig. 4.1, where the range of
locations for a QTL are shown in 1000
simulations using an F2 population of
300 individuals. It is now well established
that having more markers beyond about one
every 10–20 cM does not reduce the CI and
that the only way to reduce it is to increase
the population size considerably (Hyne
et al., 1995).

The reason for these large CIs is simply
the lack of recombination at meiosis
(Boehnke, 1994; Kearsey and Pooni, 1996;
Guo and Lange, 2000). Table 4.1 illustrates
the percentage of chromosomes that pass
into gametes with zero, one, two and three
crossovers from the parental chromosomes.
It is clear that most chromosomes (~80%)
survive meiosis with either one crossover or
none at all and thus one needs to sample a
very large number of meioses to have enough
crossovers to map the QTL with any accu-
racy: the smaller the heritability of the trait,
the larger the population required. Further
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recombination can be achieved by randomly
mating the population for two or more gener-
ations and this is particularly beneficial for
closely linked genes. However, both very
large populations and several generations of
random mating are seldom practical options
in a breeding context, particularly when
breeders need to have large plots of geneti-
cally uniform material (inbred or F1) to simu-
late agricultural conditions. Back-crosses
and F2s allow very large populations and
hence are efficient, but the spaced plant tri-
als needed to assess them are not very useful
for traits of agricultural importance, such as
yield, because the conditions are not typical.

One consequence of these large CIs is
that they will contain within them a very

large number of potential candidate genes.
Thus, a 10 cM interval will contain, on
average, about 130 rice genes and over 400
Arabidopsis genes, while some intervals in
which there is little crossing over will
contain many more. Hence, while it is
not difficult to nominate many potential
candidates, it can be very difficult accurately
to identify the correct candidate gene.

A second problem concerns multiple
QTL on a chromosome. It is difficult to dis-
tinguish two QTL that are less than 20 cM
apart, even with QTL of moderate herita-
bility, and hence two or more QTL within
this interval may be misinterpreted as one
(Lebreton et al., 1998). This can result in a
large ghost QTL being located between the
two true QTL if they are linked in coupling
(Martinez and Curnow, 1993) and possibly
no QTL being identified if they are linked in
repulsion. Either way, one is misled both in
the location and in the size of the QTL effect.

A third problem is a statistical one. QTL
location by whatever method involves scan-
ning each chromosome for the most likely
position of the QTL. This inevitably implies
that a large number of possible positions are
tested and those whose likelihood of con-
taining a QTL exceeds some critical value

QTL Analysis 47

Fig. 4.1. The distribution of estimated QTL locations obtained from 1000 simulated F2 populations.
The actual QTL had a heritability of 20% and was located at the zero point of the distribution. The 95%
confidence interval is shown as a horizontal bar.

Crossovers per
chromosome

Arabidopsis
(%)

Rye
(%)

0
1
2

3 or more

30
49
20
1

31
50
19
0

Table 4.1. The percentage of chromosomes in
gametes that have come through meiosis with
various numbers of crossovers.



are accepted. To avoid too many false
positives, the test probability level is
adjusted downwards to allow for the multi-
ple tests. Of course, this has the concomitant
result of increasing the probability of false
negatives. It is a common misconception
that, if a QTL is located with some probabil-
ity of the test statistic under the null hypoth-
esis of α (e.g. 0.001), then the probability of a
QTL being there is 1 − α (or 0.999). The truth
may well be very far from that.

The only real solution to these problems
of QTL location in segregating populations is
to repeat the experiments using a completely
different sample of genotypes derived from
the same population. One should then test
whether there are QTL in this second popu-
lation located at the positions identified in
the first. This is an approach that the human
geneticists realized some time ago and all
good human genetics experiments now have
an initial identification sample followed by
a final testing or confirmation sample. An
excellent, and probably unique example of
this in plants (maize) is the work of Utz et al.
(2000). Of course, such replication comes at
a cost. It is very expensive to do, people have
limited budgets and limited timescales and,
therefore, there is a strong reluctance to do
this. Such reluctance tends to encourage
people to believe that the QTL that they
found on a single trial are genuine and mean-
ingful and so they tend to place consider-
able, but often undeserved, reliance on this
conclusion.

There are several statistical biases invol-
ved with these QTL mapping approaches.
Only those QTL of sufficiently large effect
will be detected in any given trial, either
because their true mean effect is large or
because they are inflated, by chance, in that
environment. For example, consider a QTL
whose true, individual size is just at the
threshold of detection. Because of environ-
mental variation, it will be below that
threshold on 50% of occasions and hence
will not be detected. With several such
QTL, how many and which ones will be
significant on any given repeat of the
experiment is entirely a matter of chance,
but this will give the false impression of
genotype–environment (G × E) interaction

on repetition in space or time. QTL tend to
be less likely to be located at markers than
between them, even if they are cosegregating
with the marker, and truly terminal QTL
will tend to be located in subterminal
regions of the chromosome (Hyne et al.,
1995).

Finally, there is the very real problem
that there will be different polymorphisms
in each population with different QTL
and, of course, different molecular markers
segregating.

Possible Solutions

Let us now turn to other approaches to
fine-mapping of QTL. Clearly the type of
mapping that we have been talking about in
segregating populations leads us to rough
locations of QTL. They indicate which arm
of the chromosome the QTL is on and possi-
bly suggest a more precise location within
that arm. To be more precise about the loca-
tion of these QTL, it is necessary to use
some form of chromosome introgression/
substitution lines or near-isogenic lines
(NILs). The final stage, and the one that
I would like to discuss in this chapter, is
that of the use of stepped aligned inbred
recombinant strains (STAIRS) and I shall be
describing these in some detail towards the
end. These fine-mapping techniques enable
us to narrow down the CIs around a QTL
and so focus on a smaller subset of possible
candidate genes that might be responsible
for the trait in question. Having identified a
small number of potential candidate genes,
the final stages of this procedure involve
approaches such as gene sequencing, expres-
sion analysis, transformation and gene
silencing, etc., to identify the particular
candidate gene that is responsible for
the polymorphism identified by the QTL
(Albert and Tanksley, 1996).

To illustrate the progress from
segregating-population analysis through to
substitution lines, I shall use an example of
work on Brassica oleracea from my own
laboratory. We (Bohuon et al., 1998) have
explored the genetics of a cross between
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a DH line derived from a commercial
calabrese hybrid (‘Green Duke’) and a rapid
cycling variety (B. oleracea var. alboglabra).
This has involved mapping markers and
QTL for various traits over a number of
years and sites in a population of DH lines
derived from the F1 of this cross. QTL analy-
sis in this segregating population identified
many potential QTL, among which were six
QTL controlling flowering time, one each
on chromosomes 2 and 3 and two each on
chromosomes 5 and 9 (Fig. 4.2), but their
CIs are typically about 20–30 cM. It is well
known that B. oleracea consists of at least
three copies of most genes arising from some
ancestral polyploidy and, if we look at chro-
mosomes 2, 3 and 9, which contain QTL
from the previous study (Fig. 4.3), we also
find that these QTL overlap regions that are
syntenous both among themselves and also
with regions known to contain the same
marker alleles in Arabidopsis thaliana.
These same chromosomal regions have
also been associated with flowering QTL
in Brassica nigra and also more recently

in Brassica rapa (Kowalski et al., 1994;
Lagercrantz et al., 1996; Osborn et al., 1997).
So there appears to be consistent evidence
across chromosomes and species that this
particular paralogous region of the chromo-
some carries a gene or genes that have a
major effect on flowering time in Brassica.
Moreover, the CIs of these QTL locations
on all chromosomes and species include a
region flanked by the RFLP markers leu6 and
labi8. This region is syntenous with a region
of the A. thaliana genotype that contains the
Constans gene, which is known to be a gene
that controls flowering time in Arabidopsis.
It is in fact a zinc finger protein, i.e. a
transcription factor that controls a complex
network of genes relating to flowering time.
Therefore, it is perhaps not a coincidence
that all of the QTL illustrated in Fig. 4.3 do
in fact overlap this region and this may be
a very strong indication that Constans, or a
gene very closely linked to it, is responsible
for the flowering-time polymorphism in
all of these cases. More recent examples
have been explored in other accessions of
B. oleracea and QTL found in exactly the
same locations.

To reduce the large CIs around QTL, a
number of workers, and we are included
among them, have used the approach of con-
structing and analysing part-chromosome
substitution lines (Howell et al., 1996). The
general principle is illustrated in Fig. 4.4.
One takes two different parental lines and
introgresses parts of each chromosome of
one line, the donor line, into the other, the
recipient line, by means of marker-assisted
back-crossing. Using the Brassica lines
described in the previous paragraph as
an example, we have introgressed sections
of donor chromosome from the calabrese
parent (‘Green Duke’) into the recipient B.
oleracea var. alboglabra. In total, we have
produced some 70 different substitution
lines, each of which has an entirely common
recipient background with just a short region
of donor chromosome from the calabrese
variety (Ramsay et al., 1996). These part-
chromosome introgressions vary in length,
but it is possible, by comparing the perfor-
mance for particular traits of each one of
these substitution lines with the recipient
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Fig. 4.2. Locations of six QTL for flowering time
found in a doubled haploid population of Brassica
oleracea. The direction of the arrows indicates
whether the early-flowering parent carried the early
or late allele. The length of the arrows indicate the
confidence intervals on the locations. (Redrawn
from Bohuon et al., 1998.)



line (var. alboglabra), to know whether
or not there are QTL in that introgressed
region. Furthermore, by comparing different

substitution lines, some of which overlap
and some of which do not, it is possible to
identify fairly specifically the region of the
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Fig. 4.3. The relative positions of QTL (solid bars) on syntenous regions of Brassica oleracea and Brassica
nigra. Lightly hatched areas of chromosome indicate syntenous regions within and between species.
The smaller dark areas indicate the location of DNA syntenous to the region around the CO gene in
Arabidopsis. The 1.5 Mb region of Arabidopsis together with the RFLP markers (Lew6 and Labi8) that
delineate the region in the brassicas is shown on the right. (Redrawn from Bohuon et al., 1998.)

Fig. 4.4. An ideogram to illustrate the constitution of (a) the nine parental and donor chromosomes of
Brassica oleracea and (b) the associated single part-chromosome substitutions.



chromosome in which the QTL are located
(Rae et al., 1999). The problem with this
approach, however, is that it is necessary to
produce a very large number of substitution
lines and, as Fig. 4.4 illustrates, which par-
ticular regions you obtain are somewhat
random, despite the fact that these lines are
produced by marker-assisted selection.

When we compare the locations of QTL
found by our previous segregating popula-
tion with those found in the substitution
lines, we observe the relationships shown in
Fig. 4.5. We see that some of the QTL from
the segregating population are also found in
the substitution lines, but we also find a
number of other QTL in the substitution
lines that were clearly not detected in the
segregation populations. So the number of
QTL is considerably greater than we had
found before. This is due to two factors.
First, we have actually separated pairs of
QTL that were closely linked in coupling
in the original DH population, while we
have also been able to detect QTL that were
linked in repulsion and hence effectively
invisible (Rae et al., 1999).

A different approach to more precise
QTL mapping is to use NILs. These are gen-
erated by taking an F1 through several gener-
ations of inbreeding (in plants this would
normally be by single seed descent) towards
creating RILs and eventually identifying
individuals in some advanced generation
(e.g. the F6 to F8) that are entirely homozy-
gous for molecular markers except for one or
two loci. By selfing these particular individ-
uals, it is possible to produce two different
isogenic lines, which contain either one
or the other combination of the alleles that
were initially heterozygous in the Fn parent.
These are essentially substitution lines but
involve very small regions of just a few
centimorgans. Such NILs can be used in
exactly the same way as substitution lines to
delimit very small regions of chromosome
within which QTL may be located. Again,
the problem with this is that one is looking
at a very large number of small regions and
to have NILs covering the whole genome
would involve a tremendous amount of
work. However, the individual regions can
be very small and the fact that both NILs
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Fig. 4.5. The locations of flowering-time QTLs in Brassica oleracea, identified from the substitution
lines (dashed arrows) together with those located in the original doubled haploid population as shown
in Fig. 4.3.



from a given heterozygote can be obtained
from the same Fn parent means that trial
designs can ignore maternal effects.

When we get down to the resolution of
comparing two or a very few lines for differ-
ences due to a short region of chromosome
containing a single QTL, another problem
of interpretation and experimental design
becomes very apparent: that is, we need to
ensure that any differences are truly genetic
and not due to common environment effects.
The conventional approach to genetic exper-
iments with plants is to take seed from a
number of relevant families and to raise
the progeny across the trial area according
to some replicated and randomized design
appropriate to the material. This standard
approach is designed to remove any bias in
the trial site, but ignores biases that may be
due to prereplication effects. For example, if
there are progeny from two different families
(e.g. two NILs), A and B, and all the seed
from A comes from one single parent and
all the seed from B from another single par-
ent, then any differences among the progeny
could be due to both genetic and non-genetic
differences between the two parents. Such
non-genetic differences might include obvi-
ous factors, such as time and location of
seed production, but could also include
any other, and probably far from obvious,
environmental factors that affect the two
parents’ ability to produce seed. Geneticists
working with animals are very well aware
of such factors, but plant geneticists tend
to assume that they are not important in
plants. Our own experience with Brassica,
where we have replicated and randomized
the parents within a uniform glasshouse,
indicates that there are frequently signifi-
cant common environmental effects attri-
butable to non-obvious maternal differences
and these effects can persist throughout the
life of the progeny (Rae et al., 1999). It is
thus essential that the seed parents are
also raised in randomized and replicated
conditions and that the progeny of different
individual seed parents (but putatively the
same genetically) are raised and identifiable
in the trial. The smaller the QTL effects to
be studied, the more important such pre-
cautions become.

Although the use of substitution lines
and NILs improves the accuracy of QTL
location, it is still difficult in most cases
to reduce the CI to below 2–5 cM, and the
work to achieve even this resolution is time-
consuming, while success in finding the
appropriate genotypes is somewhat seren-
dipitous. In an attempt to permit a more
gene-targeted approach to fine QTL map-
ping, as well as increasing statistical power,
we are moving in a different direction and
developing genetic resources in Arabidopsis
to achieve this. These resources we call
STAIRS and they are designed to allow the
genetic focus to close in from the whole
chromosome to a short 0.1–1 cM interval.
The construction and use of STAIRS are
described below.

Our approach really falls into two stages.
The first stage is to produce whole chromo-
some substitution strains (CSSs) by taking
each chromosome in turn from a donor line
and using it to replace the corresponding
chromosome in a parental, recipient line.
This is a very similar approach to that
adopted by Nadeau et al. (2000) to produce
all the 20 possible chromosome substitution
lines for more detailed QTL analysis in mice.
We are doing this in Arabidopsis, which has
only five pairs of chromosomes and can be
self-fertilized, so the workload is somewhat
simpler than in mice. However, it makes a
very good exemplar to illustrate the proce-
dure. So we start by taking two lines, A and B
(Fig. 4.6), and introgress each of the chromo-
somes in turn from B into A to create five
whole CSSs. To manipulate chromosomes in
this way, it is necessary to inhibit recombi-
nation. Previously this was done in model
species, such as Drosophila and Aspergillus,
but also in wheat, capitalizing on various
features of the meiotic system of these spe-
cies, which facilitated inhibition of recom-
bination. Thus, in Drosophila, inversion
stocks were used to prevent the recombina-
tion (Kearsey and Kojima, 1967); in wheat
monosomic/nullisomic lines were used
(Law et al., 1983); and in Aspergillus somatic
segregation was employed (Varga and Croft,
1994).

In Arabidopsis,  or  in  mice,  we  have
none of these techniques available to
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us. Therefore, we have to identify those
particular individuals that have received
chromosomes from their parents that have
gone through meiosis, naturally, without
recombining. Table 4.1 illustrates data on
crossover frequencies in chromosomes of
Arabidopsis and rye, which are good exem-
plars of dicots and monocots. We see that
approximately 30–31% of chromosomes do,
indeed, go through meiosis without a single
recombinant event. This does not mean that
there were no chiasmata on the parental
bivalent; indeed, the absence of chiasmata
generally results in failure of chromosome
disjunction, so every chromosome normally
has at least one chiasma at meiosis. How-
ever, a single chiasma results in 50%
of gametes being non-recombinant, two
chiasmata 25% non-recombinant, and so on.
Because the majority of chromosomes have
one to three chiasmata at meiosis, the fre-
quency of non-recombinant chromosomes
remains quite high. Therefore, it is simply
a matter of detecting those progeny contain-
ing non-recombinant chromosomes, using
codominant markers, and selecting them

through marker-assisted back-crossing. The
principle is relatively straightforward. We
create the F1 between the donor and the
recipient lines. We then back-cross the F1 to
the recipient line, selecting back-cross indi-
viduals that have all non-recombinant chro-
mosomes, either recipient chromosomes or
donor chromosomes. On finding appropri-
ate individuals, they are self-fertilized and
their homozygous progeny selected.

Power calculations indicate that we
would need to score about 7000 back-cross
individuals to be 90% certain of obtaining
all the necessary individuals of the required
genotype. However, this does not require a
tremendous amount of work in Arabidopsis
and the procedure we use is to screen
batches of 250–400 back-cross individuals at
a time, first selecting for terminal markers on
chromosome 1 and discarding any recombi-
nant individuals. Of the survivors, which are
about 50%, we select for terminal markers
on chromosome 2, disregarding any recom-
bination, and so on. By repeating this proce-
dure for all five chromosomes, we finish
with approximately 16 individuals. These
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Fig. 4.6. Structure and origins of the five chromosome substitution strains (CSSs) derived by substituting
single chromosomes of line B into A.



we screen for intervening markers to make
sure that there has not been any recombina-
tion within the chromosomes.

Having first derived these CSSs, the next
stage is to produce the STAIRS. The STAIRS
consist of a set of inbred lines, derived from
the CSSs, each of which is homozygous for a
chromosome involving a single recombina-
tion event between the donor and the recipi-
ent chromosome, and these are illustrated in
Fig. 4.7. Arranging these single recombinant
lines (SRLs) in terms of the location of the
recombination event produces the STAIRS,
each SRL being a step in the stairs. With 100
random lines and a chromosome of 100 cM
in genetic length, each step will, on average,
be 1 cM above the previous line, and any
difference in phenotype between such SRLs
has to be due to genes in this interval.

Such lines are easily constructed and
the procedure is illustrated for chromosome

1 in Fig. 4.7. A CSS is crossed to the recipient
inbred line and the F1 back-crossed again to
the recipient line. Progeny in this back-cross
family are genotyped for 11 well-spaced
markers, one at each end and nine inter-
stitial. Individuals that have a single recom-
bination event on that chromosome are
selected and self-fertilized to fix the recom-
binant chromosome. As we saw from Table
4.1, approximately 50% of the chromosomes
will arise from a single crossover. Back-cross
individuals bearing such chromosomes are
easily identified by checking the terminal
markers. If the markers are both from the
recipient parent or both from the donor
parent, these must contain zero, two or four
crossovers and are discarded. The remaining
~50% will be mainly (~98%) single recom-
binants and the approximate location of the
recombination event can be identified by
the nine internal markers actually scored
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at this stage. So we can easily identify a
very large number of back-cross individuals
that contain single crossovers, and we
now know that these crossovers occur in
particular regions, as identified by the inter-
vening markers. These individuals are self-
fertilized and seed from such families held
separately, until needed, in groups (‘bins’)
according to the marker interval within
which the crossover had occurred. We also
have DNA from all the back-cross individu-
als selected for selfing. So, if we selected
1000 such back-cross individuals, we would
end up with ten bins each of which contains
seed (and DNA) from ~100 individuals
with recombination in a particular 10 cM
interval.

These collections of ‘binned’ seeds and
DNA, plus the residual back-cross seed and
CSSs, provide the fine-mapping resource.

To use the resource, one locates a QTL first
to a chromosome, using the CSSs, next to a
region on that chromosome using a single
SRL from each ‘bin’, and finally to very small
regions by further analysis of lines within
the ‘bin’. This is achieved as follows and is
illustrated in detail in Fig. 4.8.

1. All five CSSs plus the recipient line are
scored initially for the trait of interest. If we
discover, for example, that the CSS with
chromosome 1 has a low score while the
original recipient is high-scoring, we can
be sure that there is a gene or genes on that
chromosome controlling the trait in question
(Fig. 4.8a).
2. We now score one SRL for the trait
of interest from each of the ‘bins’ – ten in
our illustration above – and discover, for
example, that the first four are high and the
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Fig. 4.8. Use of trait information on (a) chromosome substitution lines, (b) wide STAIRS and (c) narrow
STAIRS to locate a QTL (+). (See text for details.)



last six in that series are low (Fig. 4.8b). This
proves that the QTL is in the vicinity of
marker 5, between markers 4 and 6, but this
is still a 20 cM interval. This stage is equiva-
lent to taking large steps up the STAIRS.
3. We genotype the two neighbouring
lines, i.e. SRL4 and SRL5, identified in step
2, for interstitial markers to identify the sites
of recombination and the size of the dif-
ferential region. This could well reduce the
qualifying QTL search region to 5–10 cM.
4. Residual DNA from back-cross indi-
viduals responsible for ‘bins’ 4 and 5 are
screened for single crossovers within the
5–10 cM region identified in step 3, using
additional interstitial markers and plants
raised from the selfed seed from these
individuals to identify homozygotes for
the recombinant chromosome.
5. These homozygotes are now scored for
the trait and the position of the crossover,
where the phenotype changes, is identified,
in the same fashion as in step 2 above (Fig.
4.8c). This stage is equivalent to taking small
steps up the STAIRS and could locate the
QTL to within 0.1–1 cM.

As a result of this series of steps, we
have focused in on two homozygous lines
that are identical except for a short region
of chromosome of less than 1 cM, possibly
no more than 0.1 cM, containing a QTL. In
Arabidopsis, 1 cM is, on average, equivalent
to about 45 genes, although some regions
may be more or less gene-dense, so it is now
possible to consider identifying the candi-
date gene(s) underlying the QTL. Various
approaches are available. Database searches
of the published DNA sequence of the region
may suggest potential structural genes or
transcription factors; differences between the
two lines in gene-sequence polymorphism
of these candidates can easily be explored.
Expression profiling of the two lines is a par-
ticularly feasible option. Because the lines
are almost identical genetically, the back-
ground noise due to variable genotypes is
eliminated, while environmental variation
can easily be minimized by multiplexing
transcript from several individuals. Such
analyses may identify differences in the
expression profile of genes within the

differential region of the two lines. Alter-
natively, they may indicate up- or down-
regulation of genes outside the region, but
due to polymorphism in regulatory genes
within the region. Such analyses may benefit
from identifying environments that alter the
relative phenotypic differences between the
two lines and from looking for correspond-
ing changes in the expression profile. We can
also examine other crosses to see whether
the same polymorphism in sequence of the
structural gene results in the same change in
phenotype. It may also be possible, using
single nucleotide polymorphisms (SNPs),
to identify two SRLs in the STAIRS that
only differ by one gene yet maintain the
QTL difference, so confirming the candidate
exactly. Transformation and gene-silencing
procedures can also be used, once strong
potential candidates are known.

The advantages of the STAIRS approach
are that it provides a generally applicable
and yet focused, approach to precise QTL
location, it allows one to ‘zoom in’ on
the genes responsible to almost any degree
of accuracy and, because only a few lines
are required at any one time, it permits
very large-scale replication to enhance
the statistical power of both trait- and
gene-expression analyses. We have so far
generated several CSSs and ‘bins’ of STAIRS
for two different crosses in Arabidopsis,
‘Landsberg’ × ‘Columbia’ and ‘Niederzenz’
× ‘Columbia’, and these will be made avail-
able through the Nottingham Arabidopsis
Stock Centre (NASC) in the UK. We plan to
use these resources to develop some under-
standing of the range and nature of genetic
effects for a number of QTL for different
traits.

Summary

Quantitative, multifactorial traits are
becoming a major area of genetic research
in the post-genomics era because of their
central importance in medicine, plant and
animal breeding and evolutionary biology.
However, they present a major challenge
because of difficulties in accurately locating
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and identifying the underlying genes or
QTL. There are a variety of questions to
be answered about particular QTL. These
include their number, distribution of size
of effects, gene action and interaction (dom-
inance and epistasis) and, most important,
their identity and nature, i.e. whether they
are structural or regulatory genes.

The problems of QTL location using
molecular markers in segregating popula-
tions include large CIs, low statistical power
and biased estimates. This chapter summa-
rizes these and explains their causes and
possible solutions. Partial solutions to these
problems have involved part-chromosome
substitution lines and NILs, and their advan-
tages and disadvantages are discussed. A
novel set of resources for fine-mapping,
STAIRS, is described and its development
and application described.

The solutions proposed are aimed more
for the use of the geneticist wishing to obtain
a fundamental understanding of the nature
of the genetic control of quantitative traits,
rather than as an everyday tool for the practi-
cal plant breeder. However, they could well
be judiciously applied in a breeding context
and will reveal important information that
could be of value to a breeder.
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Introduction

The objective of genetic mapping is to
identify simply inherited markers in close
proximity to genetic factors affecting quan-
titative traits (quantitative trait loci (QTL)).
This localization relies on processes that
create a statistical association between
marker and QTL alleles and processes that
selectively reduce that association as a
function of the marker distance from the
QTL. When using crosses between inbred
parents to map QTL, we create in the F1

hybrid complete association between all
marker and QTL alleles that derive from the
same parent. Recombination in the meioses
that leads to doubled haploid, F2 or recom-
binant inbred lines reduces the association
between a given QTL and markers distant
from it. Unfortunately, arriving at these gen-
erations of progeny requires relatively few
meioses, such that even markers that are far
from the QTL (e.g. 10 cM) remain strongly
associated with it. Such long-distance asso-
ciations hamper precise localization of the
QTL. One approach for fine-mapping is to
expand the genetic map – for example,
through the use of advanced intercross
lines, such as F6 or higher generational
lines derived by continual generations of
outcrossing the F2 (Darvasi and Soller,
1995). In such lines, sufficient meioses have
occurred to reduce disequilibrium between

moderately linked markers. When these
advance generation lines are created by
selfing, the reduction in disequilibrium is
not nearly as great as that under random
mating.

The central problem with any of the
above approaches for fine-mapping is the
limited number of meioses that have
occurred and (in the case of advanced
intercross lines) the cost of propagating lines
to allow for a sufficient number of meioses.
An alternative approach is ‘association map-
ping’, taking advantage of events that created
association in the relatively distant past.
Assuming many generations, and therefore
meioses, have elapsed since these events,
recombination will have removed associa-
tion between a QTL and any marker not
tightly linked to it. Association mapping
thus allows for much finer mapping than
standard biparental cross approaches. In
our review of this topic, we first define
association quantitatively and describe
mechanisms that generate it. To motivate
our discussion of rigorous methods to test for
marker association with a quantitative trait
allele, we then discuss in some detail an
example from the plant-breeding literature.
Next, we review an analysis frequently used
in human genetics to find marker associa-
tions with disease-susceptibility alleles, the
transmission/disequilibrium test (TDT). We
touch upon work to extend the TDT to
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quantitative traits and to identify QTL–
environment (QTL × E) interactions. We
describe recent developments making use of
multiple-marker haplotypes to locate QTL
and conclude with some points concerning
the power of association mapping.

Association Between a Neutral
Mendelian Marker and the Phenotype

A statistical association between a neutral
marker allele and the phenotype occurs
when marker alleles are in gametic-phase
disequilibrium (GPD) with alleles at a QTL.
Two alleles at distinct loci are in positive
GPD if they occur together more often than
predicted on the basis of their individual
frequencies. This definition of association
says nothing concerning the physical posi-
tion of the loci or of the alleles’ joint effects
on the phenotype. The term GPD is used
synonymously with the term ‘linkage
disequilibrium’, but we use the former
term since it avoids reference to linkage
(as unlinked markers can still be in GPD)
and emphasizes that associated alleles must
co-occur in gametes.

In the example of Table 5.1, the combi-
nation of alleles (or haplotype) QM is
observed with frequency pQM = 0.4, while its
predicted frequency is only pQpM = 0.3. The
alleles Q and M are in GPD with the disequi-
librium coefficient D = pQM − pQpM = cov
(Q,M) = 0.1. Note that, since D can be
expressed as a covariance, we can bound
its possible values by considering the case
when the correlation is +/− 1, giving

( ) ( )[ ]| |
/

D p p p pQ Q Q M M≤ = − −σ σM 1 1
1 2

(5.1)

For a pair of diallelic loci, the expected
value of the estimate of D is equal in
magnitude irrespective of the haplotype
frequencies used and can be calculated as
D = pQMpqm − pQmpqM. For each generation
of random mating, D decays by a factor
of (1 − r), where r is the recombination
rate between the two loci considered. Thus,
after t generations, only (1 − r)t of the initial
disequilibrium remains.

A variety of mechanisms generate link-
age disequilibrium, and several of these can
operate simultaneously. Some of the more
common mechanisms are:

1. Populations expanding from a small
number of founders. The haplotypes present
in the founders will be more frequent than
expected under equilibrium. Three special
cases are noteworthy. First, genetic drift
affects GPD by this mechanism in that a
population experiencing drift derives from
fewer individuals than its present size. Sec-
ondly, by considering an individual with a
new mutation as a founder, we see that its
descendants will predominantly receive the
mutation and loci linked to it in the same
phase. Linked marker alleles will therefore
be in GPD with the mutant allele. Finally,
an extreme case arises in the F2 population
derived from the cross of two inbred lines.
Here, all individuals derive from a single F1

founder genotype and association between
loci can be predicted based on their mapping
distance (e.g. Lynch and Walsh, 1998).
2. GPD arises in structured populations
when allelic frequencies differ at two loci
across subpopulations, irrespective of the
linkage status of the loci. Admixed popula-
tions, formed by the union of previously
separate populations into a single panmictic
one, can be considered a case of a structured
population where substructuring has
recently ceased.
3. Negative GPD will occur between loci
affecting a character in populations under
stabilizing or directional selection as a result
of the Bulmer effect.
4. Positive GPD will occur between loci
affecting a character under disruptive
selection.
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QTL allele

Marker allele Q q

M
M

0.4
0.1

0.2
0.3

0.6
0.4

0.5 0.5

Table 5.1. Haplotype, and marginal marker and
QTL frequencies.



5. When loci interact epistatically, haplo-
types carrying the allelic combination
favoured by selection will also be at higher
than expected frequencies.

Effects of Population Admixture and
Selection on Association: an Illustration

Studies to determine association between a
marker allele and the phenotype can take
two forms. In one form, groups are distin-
guished on the basis of their divergent
phenotypes (diseased vs. healthy; low vs.
high trait value) and allele frequencies are
compared across groups. Such studies are
often referred to as case–control studies in
the human genetics literature, since they
contrast disease-affected individuals (cases)
with unaffected (control) individuals. The
second type of study uses groups distin-
guished on the basis of their marker geno-
types, and phenotypic means are compared
across groups. An example of this is Beer
et al. (1997), who analysed 13 quantitative
traits on 64 North American oat varieties
and landraces grouped according to restric-
tion fragment length polymorphism (RFLP)
genotype at 48 loci. Significant associations
between RFLP fragments and group means
occurred for 11.2% of fragments when test-
ing  at  a  1%  type  I  error  rate,  indicating
many more associations than expected by
chance alone. Some caution is in order,
because (as the authors point out) the
observed marker–trait association does not
necessarily imply that markers showing a
significant effect on the phenotype are linked
to QTL. Rather, the marker–trait disequilib-
rium may exist in the absence of linkage
and, instead, may have arisen simply as a
consequence of population structure.

A classic example from humans of this
population-stratification effect is Knowler
et al. (1988), who examined candidate
haplotypes for type 2 diabetes in members
of the Pima and Tohono O’odham tribes
of southern Arizona. Individuals with one
particular haplotype had only an 8% rate of
diabetes, while those lacking this haplotype
had a 30% rate of diabetes. However, this

particular haplotype is much more common
in Caucasian populations than in full-
heritage native American populations.
When correcting for this population dif-
ference by only considering individuals of
full heritage, 59% of individuals with the
haplotype had diabetes, while 60% of the
individuals lacking the haplotype had dia-
betes. In a similar fashion, the marker alleles
associated with significantly different trait
values observed by Beer et al. (1997) may
have become associated with the phenotype
through admixture of genetically divergent
populations (for both markers and QTL)
or through the effects of selection on both
marker frequency and phenotype. In the for-
mer case, we can conceptualize the associa-
tion between marker allele and phenotype as
arising from the allele’s association with the
polygenic effect. If two populations diverge
in phenotypic mean and in frequency of
a marker allele, then admixture of these
populations will create such an association.
Under random mating, an unlinked marker
allele’s association with the phenotypic
variance will be divided by four in each gen-
eration. Unfortunately, this rule only applies
to outbreds that may conceivably random-
mate. It will be more difficult to predict the
decay of marker association with phenotype
in a germ-plasm pool of self-pollinators, such
as Beer et al.’s (1997) oat data. One obvious
population structure in the Beer et al. (1997)
data is the distinction between spring and
winter oat varieties, which differ in both
phenotype and marker frequencies (Souza
and Sorrells, 1991). Beer et al. (1997) did
not take these two divergent subpopulations
into account in their analysis.

Another potential level of population
structuring is a temporal one: Beer et al.
(1997) analysed germ-plasm spanning about
four decades of genetic improvement. Vari-
eties grouped by year of release are expected
to differ in mean for traits such as grain yield
and harvest index. Under selection, the fre-
quency of favourable QTL alleles at all loci
increases and covariances among marker
alleles across generations arise. These
covariances hamper the estimation of the
phenotypic effect associated with any single
marker (Kennedy et al., 1992). In effect, we
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may consider the germ-plasm pool analysed
by Beer et al. (1997) as an admixture of old
and modern subpopulations, the one having
undergone less selection than the other. We
would then expect to find fewer associations
between marker alleles and phenotypes
within each subpopulation than in the
combined pool. Beer et al. (1997) performed
this analysis and found only 6.5% and 4.9%
of allele–trait associations were significant
in the subpopulations of old and modern
varieties, respectively. Some of the decline
in the frequency of significant results would
be due to the difference in power between
tests on the combined pool versus within
each subpopulation. It seems likely, how-
ever, that the difference in the results also
indicates that the partition of the combined
pool into old and modern varieties suc-
cessfully separates subpopulations that are
divergent both in phenotypic mean and in
allele frequencies at certain markers.

The obvious weakness of group-
comparison studies is that the grouping
method may result in groups that contain
predominantly individuals from different
subpopulations. To eliminate this weakness,
family-based control methods seek case and
control individuals or marker alleles within
the same family.

The Transmission/Disequilibrium Test

The problem of population admixture is
ubiquitous in human-disease mapping,
promoting considerable work to develop
unbiased association estimators. Perhaps
the most successful is the TDT of Spielman
et al. (1993) to identify loci contributing
to disease susceptibility in humans in
the presence of population structure. For
outbred species, the test employs family
trios consisting of both parents and a
progeny that is affected by disease (or, in
general, that belongs to one category of a
dichotomous trait). One of the parents must
be heterozygous and carry one copy of the
focal marker allele putatively linked to
the disease-susceptibility allele. The test
consists of determining the frequency of
transmission of the focal allele to affected

progeny. A chi-square or binomial test can
determine whether that frequency deviates
from the expectation of 0.5. Two conditions
are necessary for a significant deviation: the
marker allele must be both in GPD with and
also linked to a disease-susceptibility allele.
In the TDT, both case and control marker
alleles are in effect within the same hetero-
zygote parent. Random Mendelian segrega-
tion therefore ensures that the distribution
of the TDT statistic under the null hypo-
thesis is unaffected by population structure
or selection within the pedigree (Spielman
and Ewens, 1996).

No TDT tests have been developed for
predominantly selfing species. The exten-
sion, however, should be straightforward.
A selfing TDT could employ marker infor-
mation on F1 hybrid/selfed progeny pairs,
where the F1 is heterozygous at a putatively
linked marker locus and the progeny is
affected. In this situation, transmission
frequencies have the same expectations as
for the TDT test, even if several generations
of selfing occur between F1 and inbred prog-
eny. If the F1 itself was not genotyped, its
genotype may be inferred either from the
known genotypes of its inbred parents or by
pooling DNA from a number of its progeny
derived by selfing. A potential complication
(especially in hybrids) is gametic selection,
which can bias transmission ratios. Hence,
when using a TDT, one should always also
perform a test of equal allelic transmission
when phenotypic value is ignored.

While the TDT is always a valid test of
linkage, researchers have devoted substan-
tial effort to inferring in what cases the TDT
is a valid test of population-wide association
(Spielman and Ewens, 1996). In particular,
when the family trios used are related, the
test may detect association that exists solely
in the pedigree from which those families
derive but not in the general population
(Martin et al., 2000). We view the problem as
one of determining the correct inference
space for the test result. When the test uses
multiple related families, the correct infer-
ence space for association is the pedigree
from which they derive, not the general
population. Asserting broader inference
would be an example of pseudoreplication
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(Hurlbert, 1984). Further, while the TDT
remains a valid test for linkage, the critical
interest in using association mapping is in
finding tightly linked markers. A TDT based
on multiple related families may detect asso-
ciation based on fairly distant marker–QTL
pairs simply because recombination within
the confines of the single pedigree evaluated
will fail to reduce their association.

Extensions of the TDT to
Quantitative Traits

As developed, the TDT only applies to traits
that can be scored as dichotomously in the
progeny, though these traits may be influ-
enced by more than one underlying genetic
factor. For populations undergoing artificial
selection on a quantitative trait, Bink et al.
(2000) take advantage of the insight that
‘selected’ versus ‘not selected’ constitutes
a dichotomous trait. All families with
selected progeny are therefore genotyped
and the standard TDT is applied to those
data. In the case of recurrent selection, the
observed families will generally not be
independent of each other, related as they
are through cycles of intermating. As dis-
cussed, care must be taken in determining
the inference space for positive association
results. Data sets containing genotype infor-
mation on current and previously released
varieties of inbred crops could be analysed
using the TDT in this way. Indeed, variety
pedigrees are generally known (though
some pedigrees may contain errors (e.g.
Lorenzen et al., 1995)). We can assume that
a derived variety was selected from its
parental varieties because of its agro-
nomically favourable traits. Thus, a prefer-
entially transmitted marker allele could be
inferred to be in GPD with an agronomically
favourable QTL allele.

Allison (1997) proposed five extensions
of the TDT for quantitative traits. These
extensions either compare the means of pro-
geny, conditional on whether they received
the putatively associated allele, or examine
the frequency of inheritance of the allele
among progeny whose trait values are above

or below specified thresholds. In this latter
case, we see that the use of thresholds
reduces quantitative traits to dichotomous
traits, bringing us back to the standard TDT.
Unfortunately, these tests impose restrictive
conditions on usable family trios: one het-
erozygous and one homozygous parent, and
only one offspring. In practice, one family
may have multiple progeny and/or the par-
ents may lack genotypic data. To gain power
from such data, Monks and Kaplan (2000)
present a parametric procedure that relaxes
family restrictions, allowing families of dif-
ferent types and several progeny per family
to be used. The test defines a statistic, TMK,
based on the mean cross product between
the deviation of the progeny phenotype from
the population mean and the transmission
of the focal marker allele from heterozy-
gous parents. For large sample sizes, TMK is
approximately distributed as a unit normal
[TMK ~ N(0,1)]. To apply the test to small
sample sizes or when multiple markers or
marker alleles are used, Monks and Kaplan
(2000) describe permutation procedures
to obtain empirical distributions for TMK.
Finally, to account for environmental
covariates that affect the quantitative trait of
interest, the population mean can be adjus-
ted by regression of the trait on the environ-
mental covariates (Rabinowitz, 1997). A
cross product is then calculated using the
progeny deviation from this adjusted mean.

While plant geneticists have long been
interested in genotype–environment inter-
action, efforts to account for it within human
genetics and in association tests in particular
are more recent (Schaid, 1999b; Guo,
2000a,b). In the standard TDT, QTL × E
would lead to environmental influences
on the transmission frequency of the focal
marker allele from a heterozygotic parent to
affected progeny. Such an effect could be
detected by grouping family trios according
to their environment or level of exposure to
a risk factor. Heterogeneity of transmission
frequency across groups would provide evi-
dence in favour of QTL × E (Schaid, 1999b).
Similarly, for the Monks and Kaplan (2000)
test, environments would affect the mag-
nitude of TMK in the presence of QTL × E.
Existence of QTL × E could then be inferred
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if the variance of TMK across environments is
significantly greater than zero. In observa-
tional studies where environments cannot
be randomized across family trios, inter-
pretation of such a result would need to
be treated carefully: an association between
environments and different subpopulations
could also lead to heterogeneity of transmis-
sion or of TMK in the absence of QTL × E.

Association Mapping with
Multiple Markers

Given data on multiple linked markers, each
particular combination, or haplotype, can
be considered an allele at a ‘supralocus’.
Extensions to the TDT for multiple marker
alleles can then be applied to this supra-
locus (Spielman and Ewens, 1996; McIntyre
et al., 2000). A drawback to these methods
is that they fail to make full use of all
the haplotype information, as some haplo-
types are more closely related (i.e. fewer
mutational/recombinational steps away)
than others. This potentially induces a
correlation structure among haplotypes that
needs to be considered. Several approaches
have been developed to use the full haplo-
type information to pinpoint more precisely
the location of mutations affecting disease
status or the value of a quantitative trait.
These methods are like typical linkage
methods of QTL mapping in that, for speci-
fied map locations, they relate identity by
descent (IBD) probabilities with phenotypic
resemblance among individuals. For this
task, however, linkage methods can cal-
culate exact IBD probabilities based on
meiotic events recorded in a pedigree. Asso-
ciation methods cannot rely on a recorded
pedigree and so use haplotype similarities
either to infer IBD probabilities directly or
to create cladograms, which can be consid-
ered as approximate pedigrees. We describe
three approaches.

Templeton and co-authors (Templeton
et al., 1987; Templeton and Sing, 1993) use
the haplotype marker profiles to construct a
cladogram that estimates the evolutionary
history and relationships among haplotypes.

Assume that a mutation occurred at some
point in this history on one branch of the
cladogram. Haplotypes along that branch
will be IBD for the mutation and distinct
from haplotypes along other branches. The
branches of the cladogram therefore define
nested sets of haplotypes that should have
related associations with the phenotype.
Templeton et al. (1987) present a nesting
algorithm to group haplotypes hierarchi-
cally, enabling a nested analysis of variance.
We note that the cladogram could also be
used to define a covariance matrix among
haplotype effects that would enable a mixed-
model analysis of variance to detect QTL
on the basis of significant among-haplotype
variance. While this approach does not
localize the mutation within the set of
markers used to define haplotypes, it will
increase the power to detect QTL in linkage
disequilibrium with those markers.

Meuwissen and Goddard (2000) use an
approach to estimate the covariance matrix
among haplotype effects that does help pre-
dict QTL position within the set of markers.
Starting from assumptions concerning the
population history since mutation caused
polymorphism at the QTL (i.e. effective pop-
ulation size and number of generations since
mutation), the algorithm repeatedly simu-
lates haplotype evolution and samples the
probability of IBD status across specified
categories of identity by state (IBS) among
markers within haplotypes. The covariance
among haplotype effects is then based on
their IBS and its inferred relation to IBD.
Since the probability function P(IBD|IBS)
depends on QTL location within the set
of markers, the assumed QTL location
affects the haplotype covariance matrix.
A maximum-likelihood QTL position is
inferred from the covariance matrix most
consistent with the observed phenotypes.
Note that Meuwissen and Goddard’s (2000)
approach assumes a single (monophyletic)
polymorphism at the QTL while Templeton
et al.’s (1987) cladogram approach does
not. Finally, the simulation approach may
require information about the population
history that is unavailable in practice: the
population size and possible substructure
over time, the age of the mutation, admixture
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through migration and selection on the
mutation. While Meuwissen and Goddard
(2000) show that the approach is, within lim-
its, robust to population-size and mutation-
age assumptions, applying the analysis to
real (rather than simulated) data would be of
interest in testing it.

The two methods discussed above
apply to a random sample of individuals
chosen independently of their phenotypic
value. In mapping human disease, individu-
als are not sampled randomly, but rather
chosen precisely because they are affected.
Assume now that all affected individuals
carry a disease-susceptibility allele from a
mutation that occurred only once in the
population. For a hypothesized QTL posi-
tion, the likelihood problem is now turned
on its head: rather than seeking the likeli-
hood of the phenotype measurements given
marker haplotypes, we seek the likelihood of
observing this sample of marker haplotypes
given that all individuals share a phenotype.
The likelihood of the haplotypes depends on
their genealogy, which cannot be known. In
this situation, a marginal likelihood is calcu-
lated by averaging likelihoods over different
possible genealogies, weighted by the gene-
alogy probabilities (Graham and Thompson,
1998; Rannala and Slatkin, 1998, 2000). This
high-dimensional integration over genealo-
gies can be performed using random samples
of genealogies. The algorithms to obtain
samples use recent developments in the
field of coalescent theory (Hudson, 1993;
Donnelly and Tavaré, 1995). In essence,
coalescent theory considers the haplotypes
in a sample to be the tips of the genealogical
tree and then defines probability distribu-
tions for the time in the past when branches
were joined through common ancestor
haplotypes. These steps are iterated until the
whole genealogy coalesces into a single com-
mon ancestor. Having defined the coalescent
genealogy, different events can be placed
along its branches, such as recombination
events (Graham and Thompson, 1998) or
marker or QTL mutations (Zöllner and von
Haeseler, 2000). The resultant coalescent
genealogy represents one possible path
generating the currently observed sample.
Again, the hypothesized QTL position will

affect the distribution of samples obtained
through this process and will produce differ-
ent Monte Carlo estimates of the observed
sample likelihood. Differences in likelihood
resulting from QTL position then allow for
fine-scale disequilibrium mapping using
multiple markers (Graham and Thompson,
1998).

Power of Association Mapping

Risch and Merikangas (1996) discussed
power in the context of a complete human-
genome scan to detect disease-susceptibility
alleles of relatively small effect. Given their
assumptions about the disease genetics,
they showed substantial benefits of associa-
tion mapping over linkage methods avail-
able in humans. Here we briefly discuss
factors that affect the power of association
mapping to detect QTL and reproduce
selected guidelines for sample sizes
(Schaid, 1999a; Monks and Kaplan, 2000).

The first determinant of power is the
magnitude of GPD itself, which depends
on mechanisms previously discussed. The
different mechanisms also lead to different
relationships between GPD and genetic
distance (Jorde et al., 1994; Laan and Pääbo,
1997). Ideally, a marker based on poly-
morphism in the causal locus itself is
used, ensuring maximum marker–QTL GPD
(Risch and Merikangas, 1996). Either candi-
date gene approaches or, with improving
genotyping capability, exhaustive genome
scan approaches, makes this ideal feasible.
Even with complete disequilibrium, maxi-
mum GPD depends on the frequencies of the
marker and QTL alleles, as shown above
(Equation 5.1). Consequently, alleles with a
frequency of 0.5 are most easily detected and
detection power decreases for more extreme
allele frequencies of either marker or QTL.
These considerations further indicate that,
when multiple alleles exist that affect the
trait (a condition called genetic heterogene-
ity), association mapping loses power (Ott,
1999, pp. 290–291). A more subtle conse-
quence of Equation (5.1) is that a marker
more distant from a QTL may actually
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display a higher level of disequilibrium than
a more closely linked marker.

A second determinant of power is the
effect size of the QTL allele. In human-
disease mapping, a joint measure of recom-
bination fraction between marker and QTL
and QTL effect size is given by the geno-
type relative risk (GRR) of disease for dif-
ferent marker genotype classes (Schaid and
Sommer, 1993). Considering marker classes
mm, mM and MM, GRR1 = P(disease|mM)/
P(disease|mm) and GRR2 = P(disease|MM)
/P(disease|mm). Higher GRRs indicate
larger QTL effect size. Under a multiplica-
tive model of gene mode of action where
GRR2 = (GRR1)2, disease susceptibility loci
where GRR1 = 2 are considered to have rela-
tively small effects (Risch and Merikangas,
1996). For comparison with quantitative
traits, these GRRs are similar to the relative
‘risk’ for individuals carrying a favourable
allele of being selected under an intensity
of 20% when the marker is in complete
disequilibrium with an additive QTL that
explains 10% of the phenotypic variance
and Pq = PQ = 0.5.

Finally, the mode of gene action (domi-
nant, recessive, additive or multiplicative)
greatly influences the power of QTL detec-
tion (Schaid, 1999a). Mode of gene action
determines the relationship between GRR1

and GRR2 as follows: dominant GRR1 =
GRR2; recessive GRR1 = 1; additive GRR2 =
2GRR1 − 1; multiplicative GRR2 = (GRR1)2.
The TDT makes no assumptions concerning
this mode of action when it looks at the
transmission of marker alleles to affected off-
spring. But, because only affected offspring
are sampled, the distribution of marker
genotypes that they carry depends on the
GRR. Consequently, the power of the TDT
will depend on those GRRs (Schaid, 1999a).
Likelihood methods of analysing TDT data
that are general across modes of gene action
or specific to an assumed mode and that are
more powerful than the TDT were presented
by Schaid and Sommer (1993, 1994). Tables
5.2 and 5.3 reproduce results from Schaid
(1999a) and Monks and Kaplan (2000),
respectively, to provide a general idea of
the sample sizes required to detect with
80% power QTL that affect disease
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Statistical test

Mutant allele
frequency

Disequilibrium
coefficient D GRR1 GRR2 TDT

General
likelihood

0.01

0.10

0.50

0.01

0.09

0.25

2
1
2
1
2
1

4
2
4
2
4
2

5,730
3.86 × 107

44,687
44,800
44,337
44,946

6,480
7.72 × 105

4,776
8,516
4,381
4,710

Table 5.2. Number of family trios (last two columns) required to obtain 80% power of detecting
association with a type I error rate of 5 × 10−8. This error rate allows for a genome-wide scan over
the whole human genome. (Results from Schaid, 1999a.)

Number of progeny per family

Mutant allele frequency Disequilibrium coefficient D 1 5

0.10

0.50

0.02
0.05
0.10
0.25

7130
1810
808
202

1600
404
182
45

Table 5.3. Number of families required to obtain 80% power of detecting association with a type I
error rate of 0.01. Multiple offspring may be used per family. The segregating QTL causes 10% of the
phenotypic variance and has an additive mode of action. (Results from Monks and Kaplan, 2000.)



susceptibility or a quantitative trait mea-
sured on a continuous scale.

Final Remarks

The reader will no doubt notice the heavy
influence of human genetics in much of the
above discussion of association mapping.
Plant breeders will do well in the future
to continue to follow the human-genetics
literature for continued developments and
refinements. As stressed by Walsh (Chapter
2, this volume), it behoves all practitioners
of quantitative genetics to follow develop-
ments in other subfields outside their own.
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Introduction

This chapter deals with the relationships
between molecular genetic techniques,
quantitative genetics and plant breeding.
Molecular genetic techniques include the
array of methods now available at the mol-
ecular level, including molecular-marker
technology, the technologies available for
studying gene structure and function and
the bioinformatics tools necessary for
extracting information from the data being
generated from sequencing and functional
genomics studies. Plant breeding is the
science and art of genetic improvement of
crop plants. Quantitative genetics is the
study of genetic control of traits that show a
continuous distribution in segregating gen-
erations and is concerned with inheritance
of differences between individuals that are
of degree rather than kind (Falconer, 1989).
An understanding of quantitative genetic
principles is generally considered critical to
the design of efficient plant-breeding pro-
grammes (Baker, 1984), and plant breeding
has been considered as applied quantitative
genetics (Kempthorne, 1977).

Because the only way either molecular
genetic techniques or quantitative genetics
contribute to plant improvement is through
plant breeding, this chapter discusses the
steps involved in a plant-breeding pro-
gramme. For each step, the contributions of

quantitative genetics to the plant-breeding
process will be discussed, along with a
discussion of where molecular-level tech-
niques intercept with plant breeding and
quantitative genetics.

The Plant Breeding Process

Plant breeding consists of the creation of
genetic variability, selection of élite types
from that variability and synthesis of a
stable cultivar from the élite selections. The
history of plant breeding precedes that of
the understanding of genetics, dating back
to the times when primitive people saved
seed to plant in succeeding years. Many
major plant-breeding discoveries precede
the rediscovery of Mendel’s laws – includ-
ing the development of major crops, such
as maize (Zea mays L.), wheat (Triticum
aestivum L.) and barley (Hordeum vulgare
L.) through selection from primitive races.
Mass selection for sucrose concentration in
the sugar beet (Beta vulgaris L.) root began
in 1786 and resulted in the first beet sugar
factory being built in 1802 (Smith, 1987),
100 years before the rediscovery of Men-
del’s laws. The basic principles underlying
the breeding of hybrid maize were known
prior to 1900 (Zirkle, 1952).

With the rediscovery of Mendel’s laws,
genetic principles began to be applied to
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plant breeding. Smith (1966) traces the
developments from 1901 to 1965. Because
most of the traits of economic importance
were under quantitative genetic control,
quantitative genetics became an important
contributor  to  plant-breeding  theory.  The
contributions of quantitative genetics to
plant breeding have been discussed in detail
(Dudley, 1996). Lee (1999) summarizes the
current and potential contributions of mol-
ecular genetics to plant breeding, particu-
larly with regard to understanding heterosis
and breeding hybrid plants. Moose (2000)
summarizes the potential impact of maize
genomics on   breeding   improved   maize
hybrids.

Quantitative-genetics Tools

Quantitative genetics approaches the under-
standing of genetic control of phenotype
in a deductive manner: that is, it attempts
to provide a genetic model for observed
phenotypic variation. A major contribution
of quantitative genetics has been to provide
tools for separating genetic variation from
environmental variation. As part of that
separation, tools for measuring genotype–
environment interaction (GE) and its impor-
tance have made a major contribution.
Because the ramifications of GE are dis-
cussed in Chapters 15–25 in this volume
and a symposium volume discussing this
topic is available (Kang and Gauch, 1996),
a detailed discussion is not given here.
Suffice it to say that, when environment
affects a trait, genes may act differently in
different environments.

Because quantitative traits are those
for which the effects of genotype and envi-
ronment cannot be readily distinguished,
a major contribution of quantitative-genetic
theory was to provide methods for separat-
ing genetic effects from environmental
effects. The work of Fisher (1918) and
the elaborations by Cockerham (1954) and
Kempthorne (1954) provided procedures for
describing genetic variation in a population.
These developments allowed the division of
genetic variability into additive, dominance

and epistatic variation. A major assumption
in these derivations was that gene effects at
individual loci were small and equal.

The general procedure for estimating
genetic components of variance is to devise a
mating design that will estimate covariances
between relatives (such as the covariance of
full-sibs or half-sibs). The mating design is
then grown in an environmental design. The
environmental design includes the choice of
environments (usually locations and years)
and environmental stresses (such as plant
population, irrigation or lack thereof, fertil-
ity levels, etc.), as well as the experimental
design (such as a randomized complete
block, incomplete block or other type of
design). From the appropriate analysis of
variance, design components of variance
are estimated and equated to covariances
between relatives. Estimates of covariances
between relatives are then equated to
expected genetic variance components and
genetic variances are estimated (Cockerham,
1963). Such estimates have limitations.
Assumptions usually include linkage equi-
librium in the population from which the
parents of the mating design were obtained
and negligible higher-order epistatic effects.

Using estimates of genetic variances and
of genotype–environment variances, gain
from selection can be predicted. In fact, one
of the major contributions of quantitative
genetics to plant breeding was the develop-
ment of theory for prediction of gain from
selection. A generalized prediction equation
for gain per year can be written as follows
(Empig et al., 1972):

R = cisg
2/yσP (6.1)

where c is a pollen control factor (1/2 if
selection is after pollination, 1 if selection is
prior to pollination and 2 if selfed progenies
are recombined), y is the number of years
per cycle, i is the selection differential
expressed as number of σP, sg

2 is the appro-
priate genetic variance for the type of selec-
tion being practised and σP is the appropri-
ate phenotypic standard deviation for the
progenies being evaluated in the selection
programme. This equation is critical for
comparing selection procedures. Examples
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of its use are given by Hallauer and Miranda
(1988) and Fehr (1987).

Selection by plant breeders results in
changes, not only in the trait for which
selection is being practised, but in other
traits as well (correlated response). The
extent of correlated response is a function of
the heritabilities of the primary and corre-
lated traits, as well as the genetic correlation
between the traits. Falconer (1989) presents
the correlated response equation, a corollary
to the predicted gain equation, as:

CRY = ihxhyrAσPY (6.2)

where CRY is the correlated response in trait
Y when selection is based on trait X, i is the
standardized selection differential for X, hx

and hy are the square roots of heritability of
traits X and Y, respectively, rA is the addi-
tive genetic correlation between X and Y
and σPY is the appropriate phenotypic stan-
dard deviation for Y. Equation 6.2 becomes
important not only in determining the type
of correlated response that may occur under
selection, but also in determining effective-
ness of indirect selection. If rAhx > hy indi-
rect selection for X will be more effective for
improving Y than direct selection for Y, all
other factors being equal. If, in addition,
selection for X allows progress in an envi-
ronment where Y cannot be measured, as
may be true for marker-assisted selection,
additional benefits accrue from indirect
selection. Molecular genetics and genomics,
which aim to more precisely determine the
degree of relationship between genes and
phenotypes, may help improve plant breed-
ing by providing more direct estimates of rA.
These relationships may work in both ways,
where knowledge of positive correlations
between two desirable traits can be exploited
and, conversely, where knowledge of nega-
tive correlations may suggest inefficient
selection methods. The genomics-based
knowledge may be at an individual gene
level or at the level of protein expression. In
either case, methods of combining informa-
tion over several genes or proteins will be
required.

The interest of plant breeders in selec-
tion for net worth, a function of several traits,
has led to the development of methods for

the simultaneous improvement of a popu-
lation for multiple traits (Falconer, 1989).
Three general procedures – tandem selec-
tion, independent culling levels and index
selection – have been used to approach the
question. Smith (1936) was the first to pres-
ent the concept of index selection. Smith
presented an index of the form:

I = b1X1 + b2X2 + . . . bmXm

where I is an index of merit of an individual
and b1 . . . bm are weights assigned to pheno-
typic trait measurements represented as
X1 . . . Xm. The b values are the product of
the inverse of the phenotypic variance–
covariance matrix, the genotypic variance–
covariance matrix and a vector of economic
weights. A number of variations of this
index have been developed. These include
the base index of Williams (1962), the
desired-gain index of Pesek and Baker
(1969) and, more recently, retrospective
indexes proposed by Johnson et al. (1988)
and Bernardo (1991). The emphasis in
the retrospective-index developments is on
quantifying the knowledge of experienced
breeders. Although breeders may not use a
formal selection index in making selections,
every breeder, either consciously or uncon-
sciously, assigns weights to different traits
when making selections.

The tools quantitative genetics provides
for plant breeding are those that allow for a
statistical description of genetic variability,
for separation of genetic variability from
environmental variability and prediction
of gain from various types of selection.
Although the tools are crude and the
assumptions made are often considered
unrealistic, they provide predictive power
and have served the plant breeder well.

Molecular Genetic Tools

Molecular markers

The widespread use of molecular markers
in plants is largely because of the implica-
tions they have for helping solve problems
common to quantitative genetics and plant
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breeding. The use of markers as a potential
aid in selection dates back to Sax (1923),
who found seed colour related to seed size
in beans. Stuber and Edwards (1986) were
pioneers in the use of molecular markers
(isozymes) in plant breeding. Stuber (1992)
reviewed this work. The use of markers for
selection in plant-breeding programmes is
the application of a form of indirect selec-
tion and was reviewed in detail by Dudley
(1993). The availability of molecular mark-
ers provides an additional dimension to the
use of quantitative genetics in plant breed-
ing. Potential applications of molecular
markers include marker-assisted selection,
identification of the number of genes
controlling quantitative traits, grouping
germ-plasm into related groups, selection of
parents and marker-assisted back-crossing
(Lee, 1995). A detailed discussion of the
ways a major seed company has attempted
to use molecular markers is given by John-
son and Mumm (1996). New technologies,
such as single nucleotide polymorphisms
(SNPs), provide the capability of develop-
ing densely saturated genetic maps. Further,
this technology may be automated and con-
ducted on an industrial scale, thus dramati-
cally shortening the time and cost required
to genotype a breeding population. Even-
tually, maize marker maps may be dense
enough and the cost of marker analysis low
enough for it to become cheaper to genotype
populations than to collect the phenotypic
data necessary for identifying quantitative
trait loci (QTL) (Moose, 2000).

Transformation

The ability to insert a single gene into
a plant cell or tissue and to regenerate an
entire plant containing a functional version
of that gene has opened the door to trans-
ferring genes across species barriers. Wide-
spread use of this technology produced
such new crops as Roundup Ready® soy-
beans and Bacillus thuringiensis (Bt) maize.
Limitations of the technology in the past
depended upon the species. In some spe-
cies, transformation was limited to certain

genotypes having the capability of regener-
ating whole plants from callus tissue or
from cell suspensions. This limitation is
now being removed. Regardless of the ease
of transformation, however, the general
practice is to back-cross a transgene into
élite lines or cultivars rather than trans-
forming each individual line, because of
the cost of getting regulatory approval
to use a particular transgenic event. Thus,
molecular-marker technology is needed to
hasten recovery of the recurrent parent in
the back-crossing procedure.

Genomics

Although Liu (1998) includes molecular-
marker technology in his definition of
genomics, the term is used here to include
the extensive research effort aimed at seq-
uencing the genomes of plants and animals
and understanding the functions of the
sequenced genes. The emerging area of
bioinformatics, which is providing the
statistical and computer-programming tools
necessary to mine the rapidly expanding
databases being produced by major sequen-
cing efforts, is included in this definition.
Genomics under this definition is a reduc-
tionist approach to understanding pheno-
type: that is, the genotype is reduced to gene
sequences, the function of the sequences is
determined and, finally, attempts are made
to determine the effects of the genes on the
phenotype. The hope is that, by obtaining
such an understanding, a plant can be
assembled with an improved phenotype.

Progress in sequencing the genomes
of crop plants is being made at an ever-
increasing rate. Currently, the complete
sequence of the wild mustard Arabidopsis
has been obtained. The rice (Oryza sativa L.)
genome has been sequenced and large num-
bers of expressed sequence tags (ESTs) are
being generated from crops such as maize
and soybean (Glycine max L.). Progress is
being made in developing methods for
studying the functions of the sequenced
genes. The potential use of this information
in plant-breeding programmes and its
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relationship to quantitative genetics will be
discussed in a later section.

Creation or Assembly of
Genetic Variability

The choice of parental germ-plasm with
which to begin a breeding programme is the
most important decision a breeder makes
and is the first step, after establishment
of objectives, in any plant-breeding pro-
gramme. It is only recently, however,
that quantitative-genetic theory has been
applied to this question (Dudley, 1996)
and even more recently that molecular
techniques have had an impact. Essentially,
the contributions of quantitative genetics
relate to choice of parents to produce segre-
gating generations, whereas those of molec-
ular techniques, while useful in the choice
of parents, relate more to classifying germ-
plasm into related groups and broadening
the gene pool that can be considered in
creating genetically variable populations.
To date, this broader gene pool has been
the source of single genes controlling
characteristics expressed in a manner not
readily available in the usual gene pool.

Contributions of quantitative genetics

The contributions of quantitative genetics
to selection of parents are greatest for breed-
ing programmes where the objective is to
develop an improved line or population
for a quantitative trait or a series of such
traits. A common procedure for such cir-
cumstances in both self-pollinated species,
such as wheat or soybeans, and in cross-
pollinated species, where a hybrid between
inbreds is the desired end-product, is to
cross two homozygous lines, self from the
F1 and select out an élite type from segregat-
ing generations. In self-pollinated species,
these lines are usually evaluated for per se
performance. In cross-pollinated species,
where hybrids are the end-product, similar
breeding procedures are used, with the
exception that the end-product will be a

hybrid. Thus, the criterion for selection is
combining ability of some form, rather than
line per se performance.

In either case, the general axiom,
supported by quantitative-genetic theory, is
to cross good with good. When choosing
parents, the objective is to maximize the
probability of generating new lines that will
perform better than the best pure line cur-
rently in use. The parents chosen should
generate a population for selection that will
meet the criterion of usefulness described by
Schnell (1983), as discussed in Lamkey et al.
(1995). The usefulness of a segregating popu-
lation was described by Schnell as the mean
of the upper α% of the distribution expected
from the population. Mathematically, Uα =
Y ± Gα, where Uα is usefulness, Y is the
mean of the unselected population and Gα
is gain from selection of the upper α%
of the population. This statistic takes into
account both the mean and the genetic
variability, thus emphasizing a basic axiom
in plant breeding: a population that will
produce an improved cultivar will have
both a high mean and an adequate genetic
variability.

Panter and Allen (1995) suggested using
best linear unbiased prediction (BLUP)
methods to predict the mid-parent value –
a good predictor of the mean of lines from a
cross – of soybean crosses. BLUP methods
take into consideration the performance of
lines related to the line for which perfor-
mance is being predicted. They found the
coefficient of parentage between a pair of
lines was related to genetic variance in the
progeny. Based on these results, they sug-
gested that an effective method of choosing
parents would be to identify pairs of lines
with high mid-parent values estimated from
BLUP and to select among such pairs those
that were the most genetically diverse based
on the genetic relationship matrix. Their
suggestion is supported by the results
of Toledo (1992). With the availability
of genetic markers, degree of relationship
between lines can be established from
molecular-marker data (Lee, 1995). This pro-
vides an alternative method of determining
relatedness when pedigree information is
unavailable or of uncertain accuracy.
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The same general principles apply
to choice of parents in a hybrid breeding
programme. The basic question in choosing
parents is identification of those lines or
populations that contain favourable alleles
not present in a hybrid being improved.
Dudley (1984a) framed the following
questions relative to choice of parents for a
hybrid maize-breeding programme. Which
hybrid should be improved? Which lines
should be chosen as donors to improve the
target hybrid? Which parent of the target
hybrid should be improved? Should selfing
begin in the F2 or should back-crossing be
used prior to selfing?

Procedures for answering these ques-
tions were developed based on the concept
of classes of loci (Dudley, 1982). Using this
concept, methods of identifying donors with
the greatest numbers of loci carrying favour-
able alleles not present in a hybrid to be
improved were devised (Dudley, 1984b,c,
1987a,b). Modifications of these methods
were proposed by Gerloff and Smith (1988),
Bernardo (1990a,b) and Metz (1994). Evi-
dence for their effectiveness in selecting
superior parents and identifying heterotic
relationships was presented by Dudley
(1988), Misevic (1989), Zanoni and Dudley
(1989), Hogan and Dudley (1991) and Pfarr
and Lamkey (1992).

Contributions of molecular genetics
technology

There are two major contributions of molec-
ular technology to the creation of genetic
variability. First, molecular-marker tech-
nology has provided a method of deter-
mining relationships among germ-plasm
sources. Secondly, the potential gene pool
for improving cultivated crops has been
greatly broadened by the use of transgenic
technology. A third contribution relates to
choice of parents.

Molecular markers have been used in a
variety of crops to determine relationships
among germ-plasm sources. In maize, clus-
tering based on molecular-marker-estimated
relationships has been shown to agree with

known heterotic relationships among
inbreds (Mumm and Dudley, 1994). In
soybeans, clustering based on molecular
markers has been useful in identifying
germ-plasm accessions from China with
minimal relationship to US germ-plasm
(Brown-Guedira et al., 2000). Thus, combin-
ing molecular techniques with quantitative-
genetic and statistical procedures has
provided a useful tool for cataloguing
genetic variability.

Although interspecific crosses have
been sources of genetic variability available
to plant breeders for many years, the devel-
opment of gene sequencing coupled with
transformation has allowed exploitation of
genetic variation in species, such as bacteria,
for which crosses with cultivated species
are impossible. A classic example is the
isolation of the Bt gene from Bacillus
thuringensis, modifying it to make it work in
a maize plant, insertion of the gene along
with a promoter and a selectable marker into
maize tissue culture and development of
maize with resistance to European maize
borer (Ostrinia nubilalis) at a level not previ-
ously known (Koziel et al., 1993; Armstrong
et al., 1995). Another potential of molecular
technology is the development of genes for
the production of drugs or polymers and
their insertion into plants. This develop-
ment greatly broadens the potential useful-
ness of a species. In addition, molecular-
marker technology is being used to monitor
recovery of the recurrent parent in back-
crossing programmes aimed at incorporating
transgenes into adapted cultivars.

Although transgenic technology allows
the tapping of genetic resources hitherto
unavailable to the plant breeder, it is still pri-
marily a one-gene-at-a-time approach, even
though a number of groups have success-
fully introduced multiple genes into one line
by transformation. A good example is golden
rice (Ye et al., 2000). Not every insertion of a
transgene provides a transformed plant and
not every transgenic event will be expressed
in every genetic background. In addition, the
genotype limitations on transformation in
some species require that transgenes be bred
into élite lines. Thus, attention to quantita-
tive genetic principles and hard-headed
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pragmatic plant breeding in the form of
extensive testing must be coupled with the
transgenic approaches.

Molecular-marker technology has been
proposed for use in selecting parents of
crosses. Hanafey et al. (1998) obtained a
patent for a procedure in which markers
were used to genotype élite lines and their
early progenitors. Because the élite lines had
been selected for yield for a number of gener-
ations, changes in marker allele frequency
were presumed to be the result of selection
for favourable linked genes. Élite lines
would be chosen for crossing in which
progeny would have the maximum number
of marker loci containing favourable marker
alleles.

Molecular-marker technology has a role
in identifying the best parents to use to pro-
duce a single-cross hybrid. Choice of parents
to produce a cultivar directly is usually
the result of extensive testing of a number
of combinations of potential parents. One of
the major problems facing breeders is reduc-
ing the number of possible hybrids to be
tested to a reasonable number. In general,
maize breeders work with heterotic groups,
and crosses likely to be successful as culti-
vars are usually between inbreds from differ-
ent heterotic groups (Hallauer et al., 1988).
Even if breeding is restricted to two heterotic
groups, however, thousands of potential
hybrids are possible.

Bernardo (1994) proposed applying
BLUP to this problem. In this procedure,
information on hybrid performance of a sub-
set of lines is combined with information
on the genetic relationship between the
lines tested and an untested set of lines to
predict the performance of untested hybrids.
Bernardo (1994), using a limited number
of hybrids, found correlations between
observed and predicted performance to
range from 0.65 to 0.80. He compared
restriction fragment length polymorphism
(RFLP)-based estimates of relationship with
pedigree-based estimates and found higher
correlations for the RFLP-based estimates.
In a more recent study (Bernardo, 1996)
involving 600 inbreds and 4099 tested single
crosses, correlations between predicted and
observed yields ranged from 0.426 to 0.762.

Bernardo concluded that BLUP was useful
for routine identification of single crosses
prior to testing.

Selection

Selection from the genetic variability pro-
duced in the first step in the plant-breeding
process is the stage most often thought
of when the words ‘plant breeding’ are
mentioned. A large body of literature on
selection theory and results is available.
Responses to selection have been reported
for almost every species (Hallauer, 1985).
Knowledge of the relative importance of dif-
ferent types of gene action is important in
designing effective selection programmes.

Quantitative genetics and selection

Comstock (1978) suggested that the devel-
opment of a theoretical basis for comparing
response to selection from different breed-
ing methods was one of the most significant
contributions of quantitative genetics to
maize breeding. Baker (1984) concluded
that this statement could be extended to all
economically important crops. Of the con-
tributions of quantitative genetics to plant
breeding, the predicted-gain equation, the
correlated-response equation and index-
selection theory are all contributions to
increasing selection efficiency. Although
plant breeders may not use these formal
equations in their selection experiments,
they are guided by the principles embodied
in the equations. Selection procedures can
be roughly divided into those to be used
during selfing after the cross between
inbreds and those that fall under the
heading of recurrent selection.

As Hallauer et al. (1988) point out, the
methods used to select during inbreeding
and recurrent selection procedures are
complementary parts of a breeding pro-
gramme. In fact, because one result of selec-
tion during inbreeding is the development of
improved lines that are crossed and another
round of selection carried out, selection
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during inbreeding is one form of recurrent
selection.

The appropriate generation in which to
select during inbreeding is a major question
when developing improved inbreds, whether
for use directly as cultivars (in breeding
self-pollinators) or as parents of hybrids (as
in breeding maize or sorghum). Because of
the rapid approach to homozygosity within
lines and the increased variability between
lines as inbreeding progresses, Brim (1966)
suggested using a modified pedigree (single-
seed descent) procedure, in which yield
testing was delayed until homozygosity was
nearly complete. Other workers have pro-
posed the use of doubled haploids to provide
‘instant inbreds’.

In maize breeding, there is an extensive
literature on the question of whether to test
for combining ability in early generations or
to wait until homozygosity is more nearly
complete. Bernardo (1992) developed theory
for the genetic and phenotypic correlations
between test-cross values of lines tested in
a given selfed generation and their selfed
progeny. As selfing advances, the corre-
lation increases. Heritability of test-cross
means also affects the correlation between
early-generation phenotypic values and the
expected genetic values of the progeny.
Based on theory and simulation results,
Bernardo (1992) suggested saving approxi-
mately 25% of lines based on S1 or S2 testing
if heritability is 0.25 or 0.5 in the S1 genera-
tion. He also presented tables showing the
probability of retaining lines in the upper
α% of a distribution of homozygous lines,
given that a line selected in a preceding
generation (Sn) was in the upper α% of
lines in the Sn generation. Empirical results
(Jensen et al., 1983; Hallauer and Miranda
Fo, 1988) agree with this theory.

Recurrent selection is one of the most
extensively studied forms of selection in
plant breeding (Coors, 1999). Much of the
work on recurrent selection was initiated
in maize because of the controversy over
the causes of heterosis (Gowen, 1952).
Two types of recurrent selection had been
devised based on differing views as to the
cause of heterosis. Recurrent selection for

general combining ability (g.c.a.) (Jenkins,
1940) was presumed to take advantage of
average effects. Recurrent selection using
an inbred tester (i.e. recurrent selection for
specific combining ability) was proposed by
Hull (1945) as a means of taking advantage of
overdominance, a phenomenon that he sug-
gested was of primary importance relative to
heterosis. Comstock et al. (1949) proposed
reciprocal recurrent selection with the idea
that it would take advantage of both domi-
nant and overdominant types of gene action.
Although the studies initiated as a result
of the debate over the causes of heterosis
did not resolve the causes of heterosis, they
did provide a great deal of information on
the effectiveness of different selection proce-
dures (Coors, 1999).

Quantitative-genetic studies to deter-
mine the relative importance of dominance
and overdominance can usually be summa-
rized by the statement ‘although the results
suggest additive and partial to complete
dominance effects are most important, over-
dominance cannot be eliminated as having
an effect on heterosis for maize grain yield’.
Quantitative-genetic studies have been even
less informative as to the importance of
epistasis as a cause of heterosis. Because
of the regression basis of methods for esti-
mating types of genetic variance, estimates
of epistatic variances have large standard
errors and typically are found to be non-
significant (Hallauer and Miranda Fo, 1988).
Procedures for detecting the presence of
epistasis (as opposed to measuring epistatic
variance), however, generally support the
presence of epistasis for grain yield in maize.
Based on the concept that a plant is the
end-product of a collection of biosynthetic
and chemical reactions, epistasis must play
a role in the performance of plants and in
causing heterosis.

Quantitative genetics has played a
major role in refining selection procedures.
It has provided general clues as to the types
of gene action responsible for improved
performance, but it has not proved to be a
good vehicle for identifying and measuring
types of gene action and their relative
importance.
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Molecular genetic techniques and selection

As with quantitative-genetic techniques,
molecular genetic techniques have a role in
selection and in identifying important types
of gene action. Very few selection experi-
ments based on molecular markers are
reported in the literature. Such experiments
are expensive and often not considered as
‘basic enough’ to be funded by granting
agencies. Thus, their primary development
is in the private sector. Two examples of the
successful use of selection based on molec-
ular markers have been reported. Edwards
and Johnson (1994) showed selection based
on markers to be effective for improving
sweetcorn. Johnson and Mumm (1996)
reported the effective use of markers as an
aid in early testing for combining ability in
maize. They also reported the effective use
of markers for recurrent selection for spe-
cific combining ability. The selection was
effective, however, because of the elimina-
tion of low-yielding types associated with
markers, rather than because it identified
types that were higher yielding than the
best lines that might have been identified by
phenotype selection. Work by Eathington
et al. (1997) agreed with that of Johnson and
Mumm (1996) in demonstrating the effec-
tiveness of markers as an aid in early testing
programmes.

A major contribution of molecular tech-
niques has been in gaining an understanding
of types of gene action. Although marker-
associated effects are not necessarily single-
gene effects, a few key points have come out
of the large number of studies aimed at iden-
tifying QTL. First, unlike the assumption in
classical quantitative genetics of small and
equal gene effects for genes controlling a
trait, gene effects have a distribution from
small to large. For quantitative traits, indi-
vidual chromosome segments with effects
large enough to be found significant in
experiments of reasonable size have been
identified. Careful analysis of experimen-
tal data using sophisticated quantitative-
genetic techniques has shown that chromo-
some segments originally thought to be
showing overdominance were, in fact,

carrying favourable alleles linked in repul-
sion and the apparent overdominance was
pseudo-overdominance (Cockerham and
Zeng, 1996). Development of near-isogenic
lines (NILs) from these regions has allowed
the isolation of chromosome segments
responsible for the apparent overdominance
(Graham et al., 1997).

The importance of epistasis for control
of heterosis for grain yield (Yu et al., 1997)
and grain-yield components (Li et al., 1996)
in rice (O. sativa L.) was demonstrated using
QTL analysis. Recent work has demon-
strated the importance of epistasis for QTL
controlling heading date in rice using NIL
analysis (Lin et al., 2000). Work in tomato
(Lycopersicon esculentum L.) (Eshed and
Zamir, 1996) documented the importance of
epistasis among introgressed chromosome
segments using NILs. Of particular impor-
tance is the finding that epistatic effects of a
few regulatory genes or factors may signifi-
cantly influence phenotypic variation and
the identification of QTL (Lin et al., 2000).
Thus, molecular techniques, combined with
quantitative genetics, are enhancing our
understanding of gene action controlling
quantitative traits.

The Future

Where do we go from here? The hopes for
quantitative genetics included an under-
standing of heterosis, a separation of genetic
effects from environmental effects and an
understanding of gene action. Certainly the
concepts of quantitative genetics are an
important part of any plant breeder’s tool-
kit. However, quantitative genetics has not
led to a clear understanding of the genetic
basis for heterosis (Coors and Pandey,
1999). Molecular-marker technology, when
combined with quantitative-genetic meth-
odology, has provided additional insights
into gene action. The work of Cockerham
and Zeng (1996) showed that Stuber’s
marker information could be analysed to
demonstrate repulsion–phase linkage in a
chromosome region. Graham et al. (1997)
isolated chromosome segments showing the
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importance of dominance of linked genes
as an explanation for heterosis within a
chromosome segment. The work in rice (Lin
et al., 2000) demonstrating the importance
of epistasis between chromosome segments
is another example of increased under-
standing of gene action relating to a
quantitative trait. These types of studies,
combined with quantitative-genetic princi-
ples, help elucidate some of the questions
for which quantitative-genetic methods
alone have lacked precision.

Molecular-marker technology has con-
tributed to plant breeding in a number of
areas. A major contribution, however, has
been in combination with transformation
technology to allow rapid incorporation of
transgenes having major effects for desirable
traits, such as insect and herbicide resis-
tance. Work with NILs in tomato has isolated
chromosome segments with large, economi-
cally significant effects from crosses of culti-
vated tomato with wild species (Tanksley
et al., 1996; Fulton et al., 1997). Similarly,
chromosome segments allowing significant
improvement in yield have been found in
rice (Xiao et al., 1996, 1998). Stuber (1998)
and Stuber et al. (1999) demonstrated the
usefulness of marker techniques in isolating
chromosome segments with large favourable
effects from apparently unadapted germ-
plasm, either inbreds or exotics, in maize.
These studies, in three different species,
document the potential for identifying
useful alleles in exotic, unadapted, germ-
plasm sources.

To date, genome sequencing and gene
expression analysis have not contributed
directly to quantitative genetics or plant
breeding. At the cell-biology level, Schulze
and Downward (2000) suggest that micro-
arrays can be used to gain detailed informa-
tion about specific metabolic pathways and
their response to specific stimuli. They point
out, however, that the use of microarrays
will generate huge amounts of expression
data. Whether such data lead to advances
in the understanding of biological problems
will depend on the development of method-
ologies, in experimental biology and bioin-
formatics, that allow meaningful knowledge
to be extracted. Miflin (2000) considers that

the promise of recombinant DNA technology
is in the potential for molecular analyses of
genetic systems designed to improve crop
productivity. Miflin (2000) suggests that this
goal may be approached in three ways, start-
ing at the beginning by generating complete
sequences of the plant genome; starting at
the end by genetic analysis of phenotypes
using genetic-marker technology; or starting
in the middle by metabolic analysis. He
points out that the onset of genomics will
provide massive amounts of information, but
the success of genetic analysis will depend
on using that information to improve crop
phenotypes. Thus, information from gene
sequencing and from functional genomic
analysis will be useful only when the effects
of reassortment of genomic sequences are
measured at the phenotypic level. Bernardo
(2001) considered the question of the bene-
fits of knowing all the genes for a quantita-
tive trait in a hybrid crop. Using computer
simulation, he concluded that such informa-
tion is most useful in selection when only a
few loci (e.g. ten) control the trait.

To take into account the complexities of
the combinations of gene sequences and the
interaction between those sequences will
require the coordinated efforts of a number of
scientists with different backgrounds. Plant
breeders are the individuals most able to
grow plants in the field and measure pheno-
type. They have the knowledge of phenotype
necessary to determine when changes in
phenotype have been made and whether
those changes are positive or negative. Their
skills and abilities will be essential if the
developments of the basic molecular biolo-
gists are to be useful. To organize the vast
amounts of unorganized sequence and func-
tion data being produced by the molecular
biologists will require not only the bioinfor-
matics specialist to organize the data but the
quantitative geneticist to interpret the infor-
mation and organize the results into systems
that can be used by the plant breeder.

Integration of information into a system

A plant-breeding programme is an integrated,
highly time-dependent system. Thus, as
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molecular markers were integrated into
transgenic-conversion programmes, rapid-
advancement systems making use of off-
season nurseries and minimizing the time
from planting to harvest became essential.
Coupled with that was the necessity for
high, accurate throughput in molecular-
marker laboratories. The results of marker
analysis must often be obtained for
hundreds or thousands of plants within the
time from planting to flowering (at least in
maize). These procedures must be done in a
cost-efficient manner. Thus, a great deal of
effort has been put into mechanizing the
whole process, in the field and in the labo-
ratory, to save time. The necessity for rapid
turnover and timely results means that
planning of a particular transgene conver-
sion, for example, requires a detailed out-
line of the time from the first cross to the
production of seed for wide-scale testing.

An integrated system for incorporating
transgenes into a breeding programme
has been accomplished in some crops.
The promise of more sophisticated marker
systems with increased reliability and
throughput  provides  hope  for  even  more
effective use of marker technology. Of major
importance is the question of allocation
of resources to transgenic development
as opposed to continued development of
increased base performance for yield and
other agronomic traits. Because the incor-
poration of transgenes is a back-crossing
process and the basic genotype resulting
from the incorporation of a transgene is not
improved except for the single trait affected
by the transgene, continued improvement
of other traits must be accomplished in
programmes separate from the transgenic
programme (Messmer, 1997).

How will gene sequence information
and functional genomic information be
incorporated into breeding programmes?
The results from functional genomic studies
in humans were targeted to understanding
the genetic control of large differences (for
example, tumorous vs. healthy cells; cells
treated with a given drug vs. untreated)
(Schulze and Downward, 2000). Thus com-
parisons of the genes expressed in tumorous
tissue vs. healthy tissue of a particular organ

afflicted with a particular disease were
the bases for inference. In plants, there are
relatively few cases where these types of
comparisons are of primary importance.
Gene libraries are being developed for differ-
ent tissues from plants at different maturities
and under differing types of stress. In the
short run, it seems unrealistic to expect that
such studies will have application to traits
such as grain yield in maize except where
the trait is a defensive one with a major
effect. On the other hand, a clearer under-
standing of biochemical pathways affecting
kernel quality in maize or grain quality in
soybean may allow genetic intervention into
a particular pathway and the development
of designer genes for grain with enhanced
nutritional quality for food or feed. Such
interventions may take the shape of design-
ing genes or combinations of genes to be
created artificially or cloned and then trans-
formed into other maize or soybean plants.
In this case, the incorporation of the
technology into plant-breeding systems will
probably take the back-crossing route that
has been followed with current transgenic
approaches. The development of golden
rice is an example of such an approach.
Potentially, with the development of trans-
formation technology for élite germ-plasm,
transgenes might be inserted and evaluated
in breeding procedures that simultaneously
improve line performance and optimize
expression of the transgene phenotype.
This presumes that regulatory procedures
will change to allow the approval of new
transgenic events without the current costly,
time-consuming procedures.

If microarray procedures can be used to
develop assays that identify desirable pat-
terns of gene expression in a particular tissue
that can be reliably measured, the problems
of timely data acquisition and analysis per-
vasive in transgenic procedures will again
be encountered. The whole question of inter-
action between genes (epistasis) and the
interactions of genes with environments has
yet to be addressed in a meaningful fashion
at the gene sequence and function level.
Thus, for the immediate future, the applica-
tion of these technologies to many important
plant-breeding problems is limited.
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Plant breeders and quantitative geneti-
cists have developed high-throughput
procedures to measure phenotypes at the
whole-plant level and computational
methods to quantify the relationships
between phenotype, genotype and environ-
ment. Combining these existing approaches
with genomics information will be required
to maximize the value obtained from the
significant public and private investments
in genomics research with crop species.
Without public research investment in plant
breeding and quantitative genetics training,
the potential benefits of genomics research
will not be realized. Without quantitative
geneticists and plant breeders, the public
sector cannot educate the personnel the com-
mercial companies, now heavily involved
in genomics research, will need to take
advantage of the results of their genomic
investment. Miflin (2000) points out the
large gap between gene-sequence informa-
tion and effects on phenotype. Unless the
scientific community and the sources of
funding for public research recognize this
gap and involve public plant breeders and
quantitative geneticists with the process, the
gap will only grow larger.
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Introduction

The application of molecular markers to
plant breeding can be divided into three
main categories: (i) the characterization of
germ-plasm, known as fingerprinting; (ii)
the genetic dissection of the target trait –
actually the identification and characteriz-
ation of genomic regions involved in the
expression of the target trait; and (iii) fol-
lowing the identification of the genomic
regions of interest, crop improvement
through marker-assisted selection (MAS).
The first two applications have proved
themselves by generating knowledge about
the genetic diversity of germ-plasm, thereby
allowing  placement  into heterotic groups
and a better understanding of the genetic
basis of agronomic traits of interest. For
simply  inherited  traits  –  those  that  have
high heritability and are regulated by only
a few genes – the use of molecular markers
to accelerate germ-plasm improvement has
been well documented (e.g. Johnson and
Mumm, 1996; Mohan et al., 1997; Young,
1999). Such work has proved successful in:
(i) tracing favourable alleles in the genomic

background of genotypes of interest; and (ii)
identifying individual plants in large segre-
gating populations that carry the favourable
alleles. Moreover, with the recent develop-
ment of PCR-based markers, for example,
simple sequence repeats (SSRs) (Chin et al.,
1996; Powell et al., 1996) and single nucleo-
tide polymorphisms (SNPs) (Gilles et al.,
1999), a substantial improvement in the
capacity to efficiently screen large popula-
tions has been achieved, thereby increasing
the efficiency of MAS experiments.

Traits controlled by single genes or
major quantitative trait loci (QTL) are easy to
transfer from a donor line to a recipient
line via line conversion. Such line conver-
sions, achieved through a back-cross (BC)
approach, are conducted at the Interna-
tional Maize and Wheat Improvement
Center (CIMMYT), for example, to introgress
favourable alleles of the opaque-2 gene or
a major QTL identified on the short arm
of maize (Zea mays L.) chromosome 1
that is associated with maize streak virus
(MSV) resistance. Although it is easy to lay
out a BC-MAS experiment, but given the
number of parameters involved, designing
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the most appropriate and efficient strategy
is generally not a straightforward task.
This chapter presents some theoretical
and practical guidelines for identifying the
most appropriate BC-MAS strategy based on
the objectives of different types of applied
breeding experiments.

For improvement of polygenic traits,
the efficiency of using molecular markers in
plant-breeding programmes remains ques-
tionable, with only a few success stories
published to date (Mohan et al., 1997; Ribaut
and Hoisington, 1998; Young, 1999). The
difficulty of manipulating quantitative traits
is related to their genetic complexity – prin-
cipally the number of genes involved in their
expression and interactions between genes
(epistasis). Since several genes are involved
in the expression of polygenic traits, they
generally have smaller individual effects
on the plant phenotype and are cross-
dependent. This implies that several
regions, or QTL, must be manipulated
simultaneously to have a significant impact,
and that the effect of individual regions
is not easily identified. In addition, the eval-
uation of the QTL–environment interaction
(Q × E) remains a handicap for the efficiency
of MAS, since QTL identification can be
strongly affected by environmental factors
(Beavis and Keim, 1996). To illustrate the
potential and the limitations of using DNA
markers to improve crops for complex
traits or specific environments, we present
work conducted at CIMMYT on improving
drought tolerance in tropical maize, includ-
ing the genetic dissection of target traits
of interest, a report on MAS experiments
and some innovative ideas on new MAS
strategies that might be successful. Based
on experience, the limitations of polygenic
trait improvement through QTL manipula-
tion have been clearly identified. One of
the weaknesses of the quantitative-genetic
approach that limits its use in plant breeding
is that it provides very little information
about the mechanisms and pathways
involved in drought tolerance or about the
multitude of genes involved in the plant’s
response. Recent developments in func-
tional genomics should help in overcoming
this problem, because these new approaches

allow the simultaneous study of the expres-
sion of several thousand genes. At the end of
this chapter, we also present our views on
the potential of functional genomics and the
role of physiological/biochemical pathways
as the link between functional genomics and
plant phenotype.

Cost and Efficiency of SSRs for
High-throughput MAS Experiments

The first application using a DNA marker
system, the restriction fragment length poly-
morphism (RFLP) analysis, was reported in
1980, in relation to the construction of a
genetic linkage map in humans (Botstein
et al., 1980). Since then, RFLP markers have
been widely used to construct linkage maps
for several crop species, including maize
(Helentjaris et al., 1986), tomato (Paterson
et al., 1988) and rice (McCouch et al., 1988).
To date, many RFLP markers have been
identified with tight linkage to the genes
controlling economically important traits
in various crop species. RFLPs are reliable
markers, and the same probe can usually be
hybridized on different crop genomes, mak-
ing RFLP markers useful for comparative
mapping studies as well. However, RFLP
analysis requires large quantities of quality
DNA, and detection of RFLPs by Southern
blot hybridization may be laborious and
time-consuming, which make this assay
undesirable for plant-breeding projects with
high-throughput requirements. Beginning
in 1990 (Williams et al., 1990), the develop-
ment of diverse PCR-based markers has
been vigorous and has provided the basis
for a large number of innovative methods for
recognizing DNA polymorphisms among
individuals. PCR-based techniques are
robust and amenable to automation and,
therefore, widely applied to large-scale
marker development or implementation
procedures. Among the many different
types of PCR-based DNA markers available
for use in plant breeding, SSR markers are
often preferred for reasons of cost and
simplicity. Moreover, SSRs are reliable,
codominant, abundant and uniformly dis-
persed in plant genomes. From a practical
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point of view, SSR assays can be reliably
applied on a large scale at an early stage
of plant development, due to the small
amount of tissue required to extract an
adequate amount of DNA for PCR amplifica-
tion. These qualities make SSRs attractive
for high-throughput MAS experiments.

Recently, the cost-effectiveness of using
SSRs in MAS experiments was estimated
at CIMMYT, using a spreadsheet-based
budgeting approach (Dreher et al., 2000).
Although the basic laboratory protocol used
at CIMMYT for SSR analysis remains the
same, the number of samples processed and
the number of markers analysed varies
according to the application. Table 7.1
shows the cost per data point of SSR analysis
under several scenarios. Because of the indi-
visibility of several key inputs, especially
labour, the cost of SSR analysis is high when
the number of samples and/or the number of
markers is small, but, because of economies
of scale, the cost decreases rapidly as the
number of samples and/or the number of
markers increases. For combinations involv-
ing ten or more markers and sample sizes
above 100, the cost per data point falls below
US$1.35. These cost estimates are sensitive
to changes in laboratory protocols, and they
can rise or fall significantly if the technical
parameters of the protocols are altered.

These results demonstrate that the data-
point cost for SSRs is quite independent

of the number of genotypes screened when
a large number of markers is considered,
for instance, during the construction of a
linkage map or for a BC-MAS experiment
when SSRs are used to identify genotypes
with lower contributions of a donor allele at
non-selected loci. However, when only a few
SSRs are used, for instance, in the selection
of a favourable allele at target loci, this type
of selection is cost-effective when screening
several hundred genotypes. A typical exam-
ple of this kind of MAS experiment is the
screening of a single SSR on several geno-
types to select for a mutant allele at the
opaque-2 locus in segregating populations.
Maize seed-protein quality can be improved
by selecting for mutations in the opaque-2
gene (Mertz et al., 1964), which is located
on the short arm of chromosome 7. The pres-
ence of the homozygous mutant o2 allele
at the opaque-2 locus is correlated with
changes in the amino acid balance within
the endosperm, specifically, a favourable
increase in the proportion of lysine and
tryptophan. The opaque-2 locus has been
cloned (Schmidt et al., 1990), and its
sequence has been published. Three SSRs
have been detected within the sequence
of the gene itself (phi057, phi112 and
umc1066). For several years, CIMMYT has
routinely screened thousands of genotypes,
using one of three available polymorphic
SSRs, in segregating populations to identify,
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Number of markers analysed

Sample size 1 marker 10 markers 50 markers 100 markers 200 markers 500 markers

2
10

100
250
500

1000
5000

33.55
7.79
2.26
2.00
1.96
1.94
1.91

4.37
1.85
1.35
1.32
1.31
1.31
1.31

1.83
1.35
1.26
1.26
1.26
1.26
1.26

1.53
1.31
1.25
1.25
1.25
1.25
1.25

1.38
1.27
1.25
1.24
1.24
1.24
1.24

1.30
1.25
1.24
1.24
1.24
1.24
1.24

Note: These unit costs assume that leaf samples are harvested from the field and DNA is extracted
using a sap extractor. The DNA present in each sample is quantified using a spectrophotometer and the
samples are PCR-amplified with 22-base-pair custom-made markers. Amplified fragments are separated
using an agarose gel with 2% Metaphor and 1% Seakem. When there are fewer than 500 samples, a
110 ml gel is used; when 500 or more samples are analysed, a 280 ml gel is used. Explicit travel costs
associated with leaf harvest are not included. Any change in protocol will change these representative
costs.

Table 7.1. Data-point costs for SSR molecular marker analysis (US$ per data point).



at an early stage of recombination, genotypes
that have one copy of the mutant allele at the
opaque-2 locus (BC strategy) and those that
have two copies (self-pollination strategy).
Selection is conducted before flowering to
allow the pollination of only the selected
plants. Using DNA markers to select for the
opaque-2 gene typifies the use of MAS as an
efficient substitute for phenotypic selection,
considering the recessive nature of the gene,
the absence of obvious visual selection due
to the interaction of this gene with modifiers
involved in kernel hardness and the cost of
$3.54 per sample (when processed through
chemical analysis) to quantify total nitrogen
and tryptophan levels at CIMMYT’s Soils
and Plant Analysis Laboratory.

BC-MAS for Simply Inherited Traits

The efficiency of MAS experiments for the
transfer of a single target region has been
reported for several plant genomes, the
integration of the Bacillus thuringiensis
(Bt) transgene into different genetic back-
grounds being a good example (Ragot et al.,
1995). When the expression of a target trait
is regulated by a single gene or by a gene
responsible for a high percentage of the
phenotypic variance of the trait, the transfer
of a single genomic region from a donor
to a recipient line, or line conversion, can
produce significant trait improvement. By
making an allelic map of the genome with
DNA markers, plants possessing a ‘better’
genome composition can be efficiently
identified, i.e. the donor allele at the target
segment plus the largest proportion of the
recurrent genome in the rest of the genome
process (Tanksley et al., 1989). The use of
DNA markers, which permits the genetic
dissection of the progeny at each genera-
tion, increases the speed of selection when
compared with phenotypic selection.

Before any BC-MAS experiment gets
under way, the number of target genes
involved in selection and the expected level
of line conversion must be defined. Then,
one must identify, in each generation, the
size of the population to be screened, the

number, position and nature of molecular
markers used and the number of genotypes
selected. The expected level of conversion is
closely related to the number and distribu-
tion of the DNA markers at non-target loci
and the recombination frequencies between
the target gene and flanking markers. All
of these parameters influence the number
of generations required to achieve a
specific level of BC-MAS, while offering
different alternatives for defining a strategy.
Simulation results indicate that the selec-
tion response in the BC1 could be increased
significantly when the selectable population
size is less than 50; a diminished return is
observed  when  this  number  exceeds  100
(Ribaut et al., 2002). Selectable population
size is defined as the number of individuals
with favourable alleles at the target genes
from which selection with markers can
be carried out on the rest of the genome
at non-target loci. Simulations demonstrate
that this recommendation is independent of
the number of selection regions considered.
For an introgression at one or only a few
target genes in a partial line conversion and
using only one generation of MAS at non-
target loci, such a selection conducted at BC3

would be more efficient than if it were con-
ducted at BC1 or BC2. With selection only for
the presence of the donor allele at one locus
in BC1 and BC2 and MAS at BC3, lines with
less than 5% of the donor genome can be
obtained with a selectable population size
of ten in BC1 and BC2 and 100 in BC3. To
illustrate this approach, two schemes are
presented in detail in Fig. 7.1. In Fig. 7.1A,
the complete MAS step is conducted in all
three BC generations, while, in Fig. 7.1B, the
complete MAS step is conducted only at
the third BC. The scheme that resulted in
the least amount of the donor genome (1.5%
after three BCs) utilized a complete MAS
step at each generation (Fig. 7.1A). Obtain-
ing this 1.5% required screening a popula-
tion of 200 individuals at a single locus,
followed by the screening of 109 markers
(11 per chromosome) at non-target loci at
each BC on the selectable population size
(Nsl = 100). When the single complete MAS
step is conducted only at the third BC
(Fig. 7.1B), the remnant donor genome
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contribution at non-target loci is 4.4%. In
this scheme, screening of only 20 plants at
the target locus in BC1 and BC2 is required.
The strategy employing a single complete
MAS cycle at an advanced BC is an attractive
option, especially if allelic introgression at
a few target genes is considered concomi-
tantly in several recipient lines. Indeed, the
small population required for the first gener-
ations, in which selection is only conducted
at target loci, represents a major logistical
advantage. Moreover, if one target gene is
linked to a phenotypic marker or is a trans-
gene with a selectable marker gene, such as
herbicide resistance included in the gene
construct, selection for this gene can be con-
ducted phenotypically, thereby reducing the
cost of selection. If this is the case, DNA
extraction is not required to conduct the
selection during the first generations. The
‘penalty’ for this strategy is the retention
of some donor genome contribution at non-
target loci, most of it flanking the target
genes on the carrier chromosomes. Possible
negative impacts from this remnant donor
genome on plant performance can be mini-
mized if the donor line is élite germ-plasm,
because the probability of having bad
agronomic characteristics ‘dragged’ into the
selection at non-target loci is reduced. The

approach that uses a single complete MAS
step only at the third BC has been adopted
at CIMMYT for the introgression of MSV-
resistance alleles into several élite lines. A
major QTL involved in resistance to this
African virus has been identified in four
different segregating populations on the
short arm of chromosome 1, between the
fourth and the fifth bin (artificial chromo-
some regions bounded by core markers).
Since the phenotypic variance expressed
by this region in the four QTL studies was
greater than 60%, we are concentrating our
ongoing selection exclusively on this single
genomic region. This MAS will be comple-
mented by a phenotypic screening after the
first self-pollination.

MAS for Polygenic Traits: Drought
Tolerance in Maize as an Example

Most traits of agronomic importance are
complex and regulated by several genes,
with yield being among the most polygenic
and complex. Regulation of plant responses
to stresses (abiotic and biotic) is even more
complex, due to the interaction between
the environment and the plant genotype,
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Fig. 7.1. Donor genome contribution for the allelic introgression at one target gene when (A) a complete
MAS step (n = 100) is conducted during the three BC cycles, and (B) partial MAS steps are conducted dur-
ing the first two BC cycles (n = 10) and a complete MAS step is conducted once at the third BC (n = 100).



especially when plants are grown in mar-
ginal environments. Among abiotic stresses,
breeding for drought tolerance is one of the
most challenging tasks, because selected
material should be outstanding not only
under water-limited conditions but also in
cases when rainfall is adequate. Drought is
a major cause of yield loss in cereals,
with sub-Saharan Africa being the region
receiving the most negative impact in the
world. The Food and Agriculture Organiza-
tion (FAO) estimates that 44% of the land
surface in sub-Saharan Africa is subject
to a high risk of meteorological drought,
which principally affects maize, sorghum,
rice, wheat and pearl millet.

Establishing optimal environments to
select for improved performance under
drought is complicated by environmental
variation; there is generally only one drought
generation per year in the tropics and con-
ventional selection for drought tolerance
requires careful irrigation management,
which is a constraint for many breeding pro-
grammes. In addition, there is clearly a yield
barrier for any plant and, under drought, this
yield barrier is highly related to water sup-
ply. Grain production requires a plant to
support and produce the floral structure(s)
and, without a minimum of water, there is
little or no plant development. This limita-
tion makes it difficult to predict the level of
the yield barrier under drought conditions.
Germ-plasm improvement for drought toler-
ance is a high priority for the CIMMYT maize
programme because most tropical maize is
produced under rain-fed conditions in areas
where drought is widely considered to be
the most important abiotic constraint to
production (Heisey and Edmeades, 1999).
For example, 21% of the total maize area
in sub-Saharan Africa often experiences
drought, resulting in a 33% decrease in yield.
Drought at any stage of plant development
affects production, but maximum damage is
inflicted on maize when it occurs around
flowering. Farmers may respond to drought
at the seedling stage by replanting their crop
and, at later stages, some yield may yet be
salvaged because maize is relatively drought-
tolerant at the grain-filling stage. Drought at
flowering, however, can be mitigated only

by irrigation (Pingali, 2001). CIMMYT scien-
tists, therefore, have devoted considerable
effort during the past three decades to
improving drought tolerance in maize for
the period before and during flowering.
Extensive research has been conducted in
the areas of breeding, physiology, agronomy
and, most recently, biotechnology. Today,
significant progress has been achieved
through conventional breeding (Bänziger
et al., 2000), but this approach is slow, time-
consuming and with uncertain potential for
further progress. Although challenging, bio-
technology approaches that combine QTL
studies and functional genomics should pro-
vide useful information and tools to effec-
tively complement conventional selection
for drought-tolerance improvement.

Genetic dissection of drought components

CIMMYT research on drought tolerance
using biotechnology was initiated about 10
years ago and has focused on the genetic
dissection of drought tolerance, identifying
QTL for yield components, secondary
morphological traits of interest, e.g. the
anthesis–silking interval (ASI) (Bolanõs and
Edmeades, 1996) and, more recently, physi-
ological parameters. To date, the genetic
dissection of yield components and second-
ary traits of interest has been conducted
in four different segregating crosses, under
diverse water regimes in several environ-
ments and at different inbreeding levels
(Table 7.2). In addition, to identify the
QTL for key physiological components
(e.g. hormones, proteins, etc.) involved in
drought-tolerance mechanisms, a recombi-
nant inbred line (RIL) population was
developed by single-seed descent from F3

families obtained by crossing Ac7643 with
Ac7729/TZSRW, one of the four crosses
mentioned above. The same morphological
traits as measured in the F3 families have
been evaluated in this RIL population.
In addition to physiological parameters
measured in-house, such as relative water
content, osmotic adjustment and chloro-
phyll content, we collaborated with other
research groups to determine abscisic acid
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(ABA) concentration in target tissues, root
parameters and parameters involved in
dehydration tolerance to low-temperature

stress. Recently a mapping project follow-
ing the Tanksley and Nelson (1996)
approach has been initiated with the
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Populations Trials Traits

Ac7643 × Ac7729/TZSRW
(236 F2/3 families)

92A WW (TL)
94A IS, SS (TL)
96A/B LowN (PR)
96B HiN (PR)

MFLW, FFLW, ASI, LNO, EHT, PHT, ENO,
GY, HK, KNO, CHL

Ac7643 × CML247
(236 F2/3 families)

96A SS (TL) MFLW, FFLW, ASI, LNO, EHT, PHT, ENO,
GY, HK, KNO

Ac7643 × Ac7729/TZSRW
(236 RIL families)

96A IS, SS (TL)
96B WW (TL)
99A WW, IS, SS (TL)

MFLW, FFLW, ASI, LNO, EHT, PHT, EPO,
ENO, GY, HK, KNO

K64R × H16
(280 F3 topcross families)

99B IS, SS (ZW)
00A IS, SS (KY)

MFLW, FFLW, ASI, PHT, ENO, GY, SEN

K64R × H16
(170 F4 families)

00B SS (ZW) MFLW, FFLW, ASI, PHT, EHT, EPO, SEN,
ENO, GY

CML444 × SC-Malawi
(234 F3 families)

00B WW, IS, SS (ZW)
01A IS, SS (TL)

MFLW, FFLW, ASI, PHT, SEN, TBNO, ENO,
GY

Jalisco (teosinte) × LPC21
(200 BC3F2 families)

01A IS, SS (TL) MFLW, FFLW, ASI, ENO, GY

Ac7643 × Ac7729/TZSRW
(236 RIL families)

96A IS, SS (TL)
96B WW (TL)
99A WW, IS, SS (TL)
01A IS, SS (TL)

RWC, OP, OA, RCT, CHL(J), CHL(E),
ABA(E), ABA(S), ABA (EL), EW, EGR

Ac7643 × Ac7729/TZSRW
(140 RIL families)

98 (laboratory test) Root parameters under hydroponics

Ac7643 × Ac7729/TZSRW
(220 RIL families)

00 (Phytotron)
Low temperature

Pigments, photosystem parameters, RWC,
SW, RW

Ac7643 × Ac7729/TZSRW
(220 RIL families)

01 (Phytotron)
Drought, drought and
low temperature

Pigments, photosystem parameters, RWC,
SW, RW

Stress regime: WW, well-watered; IS, intermediate water stress; SS, severe water stress; LowN,
low-nitrogen trial; HiN, high-nitrogen trial.
Location: KY, Kenya; TL, Tlaltizapan, Mexico; PR, Poza Rica, Mexico; ZW, Zimbabwe.
Morphological traits: MFLW, male flowering; FFLW, female flowering; ASI, anthesis–silking interval;
LNO, number of leaves; EHT, ear height; PHT, plant height; EPO, ear position; SEN, senescence;
TBNO, number of tassel branches; EW, ear weight; EGR, ear growth rate for 1 week; SW, shoot weight;
RW, root weight.
Physiological parameters: RWC, relative water content; OP, osmotic potential; OA, osmotic adjustment;
CHL, chlorophyll content in a young leaf (J) and in the ear leaf (E); RCT, root conductivity; ABA, abscisic
acid content, in the ear (E), in the silk (S) and in the ear leaf (EL).
Yield components: GY, grain yield; ENO, number of ears; HK, hundred-kernel weight; KNO, number of
kernels.

Table 7.2. Segregating populations analysed for yield components, morphological traits and physiolog-
ical parameters, under different stress regimes, in different locations and at different inbreeding levels.



Mexican National Agricultural Research
Program (INIFAP) to identify exotic favour-
able alleles for drought tolerance in teosinte
populations.

Our QTL identification effort first
focused on yield components and morpho-
logical traits such as the ASI (Table 7.2),
because it was important to have some infor-
mation on the genetic complexity of the
components/traits involved directly in the
phenotypic selection conducted by breed-
ers. During the last few years, we intensified
our efforts aimed at identifying the QTL
involved in the expression of physiological
parameters, to further our understanding
of the genetics of plant responses under
drought. Indeed, a plant phenotype is the
result of a differential expression of several
physiological/biochemical pathways; a
short ASI phenotype, for instance, might
involve carbohydrate and hormone meta-
bolism and translocation, as well as water
parameter regulation and/or membrane sta-
bility. An understanding of the genetic basis
of these key physiological parameters is very

important, because it will be a key link
between the results emerging from func-
tional genomics and morphological plant
responses and, therefore, should allow the
identification of major pathways.

MAS experiments

After identifying a set of QTL in the first
cross (Ac7643 × Ac7729/TZSRW) (Ribaut
et al., 1996, 1997), an initial BC-MAS pro-
ject was launched in 1994. The line Ac7643
was used as the drought-tolerant donor and
CML247 was used as the recurrent parent.
CML247 is an élite tropical inbred line
developed by CIMMYT, with outstanding
combining ability and good yield per se
under well-watered conditions. It is suscep-
tible to drought, in part because its ASI
under drought is large. Five genomic
regions involved in the expression of a
short ASI were selected for transfer from
Ac7643 into CML247. After two BCs and
two self-pollinations (Fig. 7.2), the best
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Fig. 7.2. BC-MAS experiment to improve drought tolerance of an élite tropical maize line, CML247, by
introgressing five selected regions derived from Ac7643, a drought-tolerant line characterized by a very
short ASI.



genotype was fixed from the donor line for
the five target regions (12% of the genome),
as well as for 7% of the genome lying
outside the QTL regions. The 70 best BC2F3

(i.e. S2) lines were identified and crossed
with two CIMMYT testers, CML254 and
CML274. These hybrids and the BC2F4

families (S3 lines) derived from the selected
BC2F3 plants were evaluated during the dry
winter season in 1998, 1999 and 2001 in
Tlaltizapan, Mexico, under several water
regimes. Results show that, under stress
conditions that induce a yield reduction of
at least 80%, the mean of the 70 selected
genotypes performed better than the control
crossed with CML254 and CML274. In
addition, the best genotype among the 70
selected (BC2F3 × testers) performed two
to four times better than the control. This
difference became less marked when the
intensity of stress decreased and, for a stress
inducing less than 40% of yield reduction,
hybrids resulting from the MAS or devel-
oped with the ‘original’ version of CML247
performed the same. Although the genotypes
that performed the best depended on the
stress intensity, few genotypes performed
always significantly better compared with
the controls across the six water-limited
trials. No yield reduction was observed
under well-watered conditions (Table 7.3).

Although the BC-MAS experiment
described above was successful, germ-plasm
improvement for polygenic traits restricted
to QTL manipulation has several well-
identified limitations, the most critical being
the inability to predict the phenotype of
any given genotype based on the allelic
constitution. This limitation implies that,
to increase the probability of success of a
MAS experiment, QTL identification must
be achieved on a cross basis; only a few such
experiments, including the one presented
here, have proved successful and have dem-
onstrated that this approach works (Ragot
et al., 2000). From an economic perspective,
this recommendation has some significant
consequences, because it implies construc-
tion of a linkage map and the phenotypic
evaluation of segregating families for each
cross, to identify the target genomic regions
to be manipulated. Using the spreadsheet

developed at CIMMYT, construction of
a linkage map alone costs an estimated
US$25,000 (estimated for CIMMYT-Applied
Biotechnology Center (ABC)). When con-
sidering the entire experiment (Fig. 7.2),
including all the different selection steps,
the cost increases to US$98,000. Such costs
obviously limit the application of MAS for
polygenic trait analysis in breeding pro-
grammes at institutions such as CIMMYT,
where there is no direct financial return from
the germ-plasm. In addition, considering the
number and the diversity of the environ-
ments targeted by CIMMYT in developing
countries, a major investment to improve a
single line will rarely provide an adequate
return. To try to overcome these limitations,
new strategies have been developed at
CIMMYT that are aimed at reducing the cost
of MAS experiments and delivering new
germ-plasm instead of improved versions
of existing lines (Ribaut and Betrán, 1999).
Some of these new strategies are now being
tested at CIMMYT, and resources have been
allocated to: (i) the construction of a consen-
sus map that combines information related
to QTL characterization and gene expres-
sion; and (ii) the identification through
functional genomics of a set of key genes/
pathways involved in maize drought
response that will be used as selection tools
in breeding programmes.

Consensus map

The objective of the consensus map consid-
ered here is to compile information that is
or will soon be available at CIMMYT (Table
7.2) and in the public domain on the mecha-
nisms of drought tolerance in maize at the
genetic and genomic levels. To construct
the consensus map, anchor molecular mark-
ers that are common to the four segregating
crosses developed at CIMMYT are used to
position all the markers on a single map
through linear regression. In a second phase,
the QTL information generated for each
cross (QTL for yield components, morpho-
logical traits and physiological parameters)
will be compiled on the consensus map,
assigning a ‘weight’ for each QTL set. The
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Hybrids CML254 Hybrids CML274

Trial Genotype Mean Yield loss (%) Best genotype Mean Yield loss (%) Best genotype

1998A WW

1998A IS

1998A SS

CML247 Orig
CML247MAS
CML247 Orig
CML247MAS
CML247 Orig
CML247MAS

6153 ± 780
7173 ± 846
748 ± 475

2028 ± 982
578 ± 550
904 ± 1399

0.6
0.6

87.8
71.7
90.6
95.5

7401
8712 (gen. 2)

1303
4529 (gen. 57)

1443
4169 (gen. 24)

7638 ± 689
7674 ± 928
1854 ± 665
2166 ± 862
464 ± 597
829 ± 898

0.6
0.6

75.7
71.8
93.9
89.2

8964
9483 (gen. 21)

2640
4057 (gen. 10)

1696
3006 (gen. 49)

1999A WW

1999A IS

1999A SS

CML247 Orig
Ac7643
CML247MAS
CML247 Orig
Ac7643
CML247MAS
CML247 Orig
Ac7643
CML247MAS

10705 ± 186
10505 ± 302
10527 ± 248
6421 ± 231
5936 ± 447
5980 ± 407
6156 ± 398
5387 ± 381
5730 ± 477

0.6
0.6
0.6

40.0
43.5
43.2
42.5
48.7
45.6

10935
10814

11101 (gen. 57)
6812
6523

6709 (gen. 15)
6862
5930

6560 (gen. 14)

10637 ± 194
10722 ± 196
10851 ± 291
6248 ± 309
4863 ± 340
5443 ± 435
5472 ± 247
4900 ± 529
5229 ± 405

0.6
0.6
0.6

41.3
54.6
49.8
48.6
54.3
51.8

10842
11048

11607 (gen. 47)
6711
5495

6616 (gen. 43)
6084
5378

6057 (gen. 12)

2001A IS

2001A SS

CML247 Orig
Ac7643
CML247MAS
CML247 Orig
Ac7643
CML247MAS

4709 ± 486
4072 ± 234
4900 ± 614
3889 ± 356
4221 ± 309
4311 ± 551

5233
4417

6166 (gen. 26)
4410
4629

5761 (gen. 64)

3264 ± 497
2109 ± 268
3500 ± 711
3006 ± 519
2606 ± 246
3265 ± 656

3977
2415

5188 (gen. 70)
3604
2919

5144 (gen. 70)

Table 7.3. Grain yields per plot (kg ha−1 ± SD) under different water regimes (ww, well-watered; IS, intermediate stress; SS, severe stress conditions) of the
original CML247 version, the donor line (Ac7643) and the MAS-improved versions of CML247 when crossed with two CIMMYT tester inbred lines (CML254
and CML274). The mean of the control was calculated based on ten entries for CML247 and five entries for Ac7643, while the mean of the improved genotypes
represents 70 different entries selected after MAS. ‘Best genotype’ is the yield of the highest-yielding genotype cross out of the entries.



weight will have two major components: (i)
the nature of the trait; and (ii) the threshold
value of the QTL identified under a specific
environment – likelihood ratio (LR). Once
all the QTL and gene expression informa-
tion is integrated into a consensus map,
we hope to identify noteworthy regions
involved in maize drought tolerance. Those
regions might be related to the expression of
the same trait (different crosses or environ-
ments) and/or a combination of different
target traits (same cross and/or different
crosses or environments). Therefore, a con-
sensus map should highlight common QTL
and gene expression among populations as
well as among environments. The stability
of a QTL, i.e. the frequency with which it
is identified across experiments, might also
be taken into account when assigning a
weight to each QTL to further reinforce this
important characteristic.

A drought-tolerant phenotype is the
result of the accumulation of favourable
alleles at a large number of genes. The fact
that some of those genes form clusters within
the maize genome, as suggested by the
genetic information available in the maize
database (Khavkin and Coe, 1997), might
be essential for the identification of those
‘common drought regions’ across crosses.
The different components and therefore the
nature of this consensus map will evolve
over time, as more information from QTL
and gene discovery studies is incorporated,
and also as the information generated at the
gene expression level is analysed and inte-
grated with available QTL/gene information.
If genomic regions involved in the expres-
sion of drought tolerance can be identified
using the approach described here, new
MAS strategies that do not necessarily
require the construction of linkage maps for
every new cross under consideration might
be developed. A MAS experiment based on
the regions of interest reported on the con-
sensus map will not be the most efficient
approach, because only some, rather than
all, of those regions will have a significant
impact on the plant phenotype, depending
on different allelic composition of the
crosses. Nevertheless, this type of MAS can
be conducted at a very low cost (several

thousand dollars per cross), with a poten-
tially large throughput.

Gene discovery and characterization

The identification of genes involved in
plant responses under drought has been
widely explored (Skriver and Mundy, 1990;
Bray, 1993; Ingram and Bartels, 1996;
Cushman and Bohnert, 2000) and, to date,
if one tries to establish a list of candidate
genes for drought tolerance based on
the gene function, hundreds of genes can
easily be listed. The question is how to pri-
oritize research aimed at validating those
genes putatively involved in the drought-
tolerance process and how to characterize
their impact on plant response under a
given set of experimental conditions.

One option is to prioritize the gene-
expression study for the genes/expressed
sequence tags (ESTs) that mapped – when
this mapping position is known – into a
genomic region of interest previously identi-
fied through a QTL study. This correlation
at the mapping level should increase the
probability that a differential expression of
these genes will have an impact on the plant
phenotype. Another option is to consider the
chronological sequence of gene expression
within a target pathway. In this case, the
characterization of the genes involved in the
initiation phase of the stress response (e.g.
genes encoding for stress-induced trans-
cription factors) represent a logical priority,
since they represent the ‘upstream keys’ to
global genomic responses that might involve
hundreds of genes. Moreover, once they
have been identified, expression of these key
genes should serve as a ‘timing reference’ to
identify expression products from down-
stream genes involved in stress responses.
Examples of these ‘upstream genes’ include
the recent discovery of the promoter regula-
tory elements DRE (dehydration-responsive
element) and ABRE (ABA-responsive ele-
ment) associated with dehydration- and
low-temperature-induced gene expression
in Arabidopsis (Shinozaki and Yamaguchi-
Shinozaki, 1997), as well as the identification
of transcriptional factors interacting with
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these promoters (Liu et al., 1998). Due to
their potential impact on a plant phenotype,
a large effort is dedicated to the identifica-
tion and characterization of transcriptional
factors involved in the plant response under
abiotic stress conditions. This effort goes
towards the identification of the mecha-
nisms involved in drought-perception and
signal-transduction pathways that are still
poorly understood.

Functional genomics: a new source of
knowledge

Through the development of emerging tech-
nologies that provide functional informa-
tion at the gene level, gene characterization
under stress conditions (i.e. expression
framework) has received a significant boost
in recent years (e.g. Bohnert et al., 2000).
Maize cDNA libraries have been generated
from stressed roots and leaves from imma-
ture 2-week-old plantlets. Many of these
transcripts have been sequenced and the
sequences deposited in the maize data-
base (http://www.zmdb.iastate.edu/). These
sequences (or part of them), based on
random or functional selection, have
been arrayed to provide gene-expression
screening tools, such as microarray (EST
sequences) (Schena et al., 1995) or DNA
chip (oligonucleotides) (Fodor, 1997). To
date, microarrays generated with cDNA
sequences from maize are available as a
product of a National Science Foundation
plant genome research project – maize gene
discovery, DNA sequencing and phenotypic
analysis – led by Virginia Walbot (Stanford
University). So the tools are available, but
the challenges that still remain are: (i) how
to design the most suitable profiling experi-
ments; and (ii) how to efficiently normalize
and organize the generated information to
make it useful. The design of a suitable pro-
filing experiment is not a straightforward
task, because the germ-plasm, the target
tissue, the time line, the experimental
conditions and the repeatability of the
experiment need to be carefully considered.
The RNA to hybridize on a microarray can

come from contrasting germ-plasm (line,
hybrids, families) for a target trait or from
the same germ-plasm but under different
experimental conditions, or both. If work-
ing with fixed lines or hybrids to identify
key pathways involved in the plant
response proves satisfactory, going to a
‘finer’ level of understanding of plant
response will require access to segregating
populations, such as RILs or near-isogenic
lines (NILs). The phenotypic and genetic
(QTL) characterization of such segregating
populations under several environments
and conditions would be a significant
advance, because this information would
allow the study of differential expression
of genotypes from the two tails of the
phenotypic distribution of a target trait. In
addition, and as already mentioned above,
the QTL location can be used as a validation
step for the candidate genes that display
differential expression and map at the
same genomic region as a QTL. The use of
segregating families with the same genetic
background will allow the elimination of
many false-positive genes, i.e. genes that
present differential expression but are not
related to the target trait, as is the case when
working with contrasting lines and hybrids.
Due to the large potential of functional
genomics, several suitable approaches can
be considered depending on the question
one tries to answer. Undoubtedly, this new
area of investigation will generate a large
amount of information that should help
bridge the gap between gene function and
plant phenotype.

Conclusions

Projections indicate that the extent and
severity of the crop-production problem
stemming from water-limited conditions
will, unfortunately, increase in both devel-
oped and developing countries during
the coming years. That this is recognized
by policy-makers and scientists alike is
reflected in the increasing number of teams
working on bettering our understanding of
drought tolerance and improving plant
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response under drought conditions, in
model plants such as Arabidopsis and
in food crops (for a review, see Edmeades
et al., 2001). During the last 10 years, the
development of molecular genetics and
QTL analysis has allowed us to identify
genomic regions involved in drought toler-
ance in several cereal species (e.g. maize,
sorghum, wheat and rice). In maize, this
genetic dissection has been conducted for
yield components and morphological and
physiological traits. The weakness of this
quantitative-genetic approach is that it
provides very little information about
the mechanisms and pathways involved in
drought tolerance or about the multitude of
genes involved in the plant’s responses. The
recent development of functional genomics
should help overcome this limitation,
because it will allow a simultaneous study
of the expression of several thousand genes.

Based on progress to date, it is clear that
a multidisciplinary approach – combining
breeding, physiology and biotechnology – is
required for an effective understanding of a
plant’s response to drought stress. Given the
complexity of the problem, a better under-
standing of the genes and the pathways
involved in plant responses will be crucial
to accelerating, sustaining and comple-
menting conventional breeding program-
mes. The QTL-characterization efforts initi-
ated several years ago provide a powerful
base of information and germ-plasm for the
genetic dissection of physiological drought-
adaptive traits. This physiological genetic
approach, combined with the potential
of functional genomics, including gene-
expression profiling and proteomics, will
allow us to identify the key pathways
involved in drought stress and to know
how they interact. This, in turn, will lead to
efficient and effective strategies for develop-
ing cereals with higher productivity under
water-limited conditions.
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Introduction

Barley (Hordeum vulgare L.) is an economi-
cally important grain crop and has long
been an interesting and useful model for
genetic analysis. Classical genetic analyses
in barley were facilitated by the availability
of many morphological and biochemical
variants (Lundqvist et al., 1997), by diploid
inheritance and by a high degree of self-
pollination. Cytogenetic studies of the bar-
ley genome were facilitated by its relatively
small number (2n = 2x = 14) of large and
visually distinct chromosomes. With trans-
location stocks, trisomics and wheat–barley
addition lines (Ramage, 1985; Shepherd
and Islam, 1992), genes were assigned to
chromosomes, linkage maps were orientated
and centromere positions were estimated.

With the development of molecular-
marker technology, it became possible to
construct detailed whole-genome linkage
maps within mapping populations derived
from individual crosses. Marker poly-
morphism within H. vulgare was sufficient
to permit the construction of intraspecific
genome maps (e.g. Heun, 1992; Kleinhofs
et al., 1993; Qi et al., 1996). Inbred lines
or doubled haploid lines could be used as
mapping parents. Crosses among parents
could be easily made and random samples

of recombinant-inbred or doubled-haploid
progeny could be easily derived, providing
‘immortal’ mapping populations. Seed of
these populations could be readily repro-
duced and shared among researchers, per-
mitting genotyping at many marker loci and
phenotyping of many traits under a range
of environmental conditions. Thus, barley
was among the first crop species for which
quantitative trait loci (QTL) were mapped
(Heun, 1992; Hayes et al., 1993). QTL map-
ping provided a major new tool for the
study of quantitative traits in barley, traits
for which genetic analysis had previously
been limited to the estimation of population
parameters, such as heritability, combining
ability and the effective number of genes
(Hockett and Nilan, 1985).

Positions, effects and interactions of
QTL have now been estimated for many
barley traits and some of these QTL have
been experimentally validated and/or been
the object of marker-assisted selection efforts.
Information on the more than 750 barley
QTL reported in the literature has been
summarized by Hayes et al. (2000). Here, I
shall present and discuss several examples
of barley QTL research to illustrate some of
the insights that genome mapping has been
able to provide regarding the genetic control
of a diversity of quantitative traits in barley.
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QTL Affecting Barley Grain Yield

Crop–plant yield can be viewed as an inte-
grative trait that reflects the overall vigour
and physiological efficiency of a plant geno-
type, its responses to environmental factors,
including abiotic and biotic stress, and its
patterns of biomass partitioning. Therefore,
it seems reasonable to expect barley grain
yield to be affected directly and indirectly
by many genes and to be subject to environ-
mental effects and genotype–environment
interactions. Given the inherently low power
of QTL experiments for low-heritability
traits, most QTL analyses of barley grain
yield have detected only a few loci.

Some individual QTL apparently have
quite large effects on grain yield and, in some
cases, it has been possible to attribute these
to specific major genes or gene clusters
and/or to loci that affect growth habit and/or
specific yield components. In six-rowed
barley, Hayes et al. (1993) found that yield
QTL often coincided with QTL for plant
height and lodging and that one important
QTL coincided with a previously mapped
Ea maturity locus. In two-rowed barley,
Thomas et al. (1995) and Bezant et al. (1997)
both detected significant QTL effects for
grain yield in the region of the major plant
stature gene sdw1 (denso). In a winter–
spring barley mapping population, Oziel
et al. (1996) found loci affecting vernaliza-
tion requirement, photoperiod reaction and
low-temperature tolerance to be important
determinants of grain yield. In populations
derived from crosses between two-rowed
and six-rowed parents, the region of chromo-
some 2 that contains the vrs1 locus (the
determinant of two-rowed vs. six-rowed
spike morphology) has been found to be an
important determinant of grain yield (Kjaer
and Jensen, 1996; Marquez-Cedillo et al.,
2001).

In multiple-environment experiments,
QTL for grain yield have exhibited
interactions with environments. Based
on six-rowed barley yield data from five
environments, Hayes et al. (1993) observed
QTL–environment interactions that were
due to differences in magnitudes of QTL

effects. Based on two-rowed barley yield
data from 28 environments, Tinker et al.
(1996) observed QTL–environment inter-
actions involving changes of both sign and
magnitude across environments. Further
analysis of QTL–environment interaction
patterns for grain yield and other agronomic
traits may provide insights into the patterns
and mechanisms underlying genotype–
environment interaction in barley.

QTL Affecting Developmental
Traits in Barley

Traits related to the rate of plant develop-
ment (often assessed as heading date and/or
maturity date) are of major importance
in determining the suitability of barley
cultivars for particular production environ-
ments. Loci involved in the determination
of days to heading in barley include the
sdw1 gene, major and minor genes for ver-
nalization response and photoperiod sensi-
tivity and ‘earliness per se’ genes (Laurie
et al., 1995; Hay and Ellis, 1998). Yin et al.
(1999) demonstrated that crop-development
models can be used in QTL analyses of
traits that vary with developmental stage.
Using a simple ecophysiological model,
they integrated daily-temperature data into
the assessment of specific leaf area and
were able to gain insight into how different
QTL affect specific leaf area at different
phenological stages. For example, they
found that an apparent effect of the sdw1
locus on specific leaf area is its indirect
effect on preflowering duration.

QTL Affecting Barley Grain- and
Malt-quality Traits

Malting of barley for use in brewing
involves a steeping of the grain in water,
followed by germination in a controlled
environment. The resulting ‘green malt’ is
then dried by kilning. Assessment of malt-
ing quality involves a series of grain-quality
assays conducted on barley grain samples
and a series of malt-quality assays conducted
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on malt samples obtained by ‘micromalting’
barley samples. The biochemistry and phys-
iology of barley malting are relatively well
understood and the genetic variation for
malting quality is quite well documented,
but the genetic control of malting quality is
apparently complex and is not well under-
stood. The high cost of assaying malting
quality for large numbers of samples has
limited the number and scope of QTL
mapping experiments for malting quality.
Nevertheless, QTL for malting-quality traits
have been mapped in several major germ-
plasm groups of malting barley, European
two-rowed spring barley (Thomas et al.,
1996; Bezant et al., 1997; Powell et al.,
1997), North American two-rowed barley
(Hayes et al., 1996; Mather et al., 1997),
Australian two-rowed barley (Langridge
et al., 1996) and North American six-rowed
barley (Hayes et al., 1993; Han et al., 1995;
Oberthur et al., 1995; Ullrich et al., 1997)
and in crosses between two-rowed and six-
rowed barley (Hayes et al., 1996; Marquez-
Cedillo et al., 2000) and between winter and
spring barley (Oziel et al., 1996).

Most of these mapping experiments
involved crosses between a malting-quality
cultivar and a cultivar or line not suitable
for malting. At most malting-quality QTL,
the favourable allele came from the malting-
quality parent, however, there appears to be
some scope for the identification of favour-
able alleles in non-malting germ-plasm.
Certain malting-quality traits (e.g. kernel
weight and malt quality, grain protein
and diastatic power, beta-glucan and soluble
total protein) tend to exhibit unfavourable
associations. These may be due to genetic
and/or environmental causes. In some cases,
QTL experiments have provided evidence
of genetic causes for such associations
(i.e. coincident QTL, indicating pleiotropic
genes or repulsion-phase linkage blocks)
but have also provided some evidence of
independent genetic control (i.e. QTL that
affect one trait but not the other). In at least
some germ-plasm groups, the QTL results
indicate that it should be possible to achieve
some improvements in these traits, despite
the unfavourable associations (Igartua et al.,
2001).

Some of the QTL detected for malting-
quality traits coincide with amylase loci
(Amy1, Amy2, Bmy1, Bmy2), with hordein
loci (Hor1, Hor2) or with loci affecting grain,
spike and plant morphology (vrs1, int-c,
sdw1). In two-rowed × six-rowed crosses,
the vrs1 region has important QTL effects
on multiple grain- and malt-quality traits
(indicating pleiotropy of vrs1 and/or a link-
age block of different genes) and exhibits
epistatic interactions with other regions of
the genome (Hayes et al., 1996; Marquez-
Cedillo et al., 2000). Effects of this region
have been found even in two-rowed material
that is not segregating at the vrs1 locus
(Langridge et al., 1996), suggesting that there
may be other malting-quality genes in
this region. In two-rowed barley, important
effects on malting quality have also been
found in the sdw1 region. In most cases,
the favourable effects in this region are
associated with the dwarfing allele, which is
present in many European malting-quality
cultivars. There are also reports, however,
of favourable effects being associated with
the alternate allele of a malt-quality QTL in
a cross not segregating at the sdw1 locus.
Thus, there may be other malting-quality
QTL in this region of chromosome 3.

The results of several mapping experi-
ments indicate that chromosome 7 (5H) is
of particular importance for malting quality
(Hayes et al., 1993; Langridge et al., 1996;
Mather et al., 1997; Marquez-Cedillo et al.,
2000). Different regions of that chromosome
are important in different crosses.

QTL Affecting Traits Assessed by
Digital-image Analysis

In malting, the sizes, shapes and uniformity
of barley kernels can be of critical impor-
tance. Conventional methods of assessing
these characters relied mostly upon the
determinations of the mean weight of kernel
and the proportions of the kernels that
passed over or through sieves of specific
sizes. Digital-image analysis has provided
new ways of assessing size and shape char-
acteristics, providing data on the length,
width, area, perimeter and roundness of

Explorations with Barley Genome Maps 103



individual kernels and on the variability
among kernels within samples. Similarly,
digital-image analysis can be used to study
the sizes, shapes and uniformity of starch
granules within barley endosperm, and
these characteristics may also influence
malting, given that starch degradation is
a key process in malting. Image analysis
of samples from a mapping population
permits QTL analysis of kernel or granule
size and shape characteristics and of the
uniformity of these characteristics.

For starch-granule traits in a six-
rowed barley population, Borém et al. (1999)
reported that the major QTL effects were in a
chromosome region that also affected days to
heading and plant height but contained no
QTL for grain or malt quality. That region
affected the overall mean starch-granule
volume via effects on the average diameter
(but not thickness or roundness) of type A
(large) granules and the proportion of type A
granules. The same QTL region affected the
roundness but not the size of type B (small)
granules.

In a two-rowed × six-rowed mapping
population, Ayoub et al. (2002) applied QTL
analysis to image-analysis data on kernel
size and shape characteristics, and detected
QTL affecting only the means of these
characteristics, QTL affecting only the
variability of these characteristics and QTL
affecting both means and variability. The
vrs1 region had the most important effects,
and there were also QTL effects detected at
or near int-c, a locus that affects the develop-
ment of lateral spikelets. QTL analysis of
two-rowed and six-rowed subpopulations
gave differential results, providing evidence
of epistasis between the vrs1 region and
other QTL. Numerous significant QTL
were detected in the two-rowed subpopu-
lation, but, surprisingly, none was detected
in the six-rowed subpopulation.

QTL Affecting Quantitative Disease
Resistance in Barley

When it is possible to classify disease
responses as either resistant or susceptible,

the resistance genes responsible for these
responses can be mapped in the same
manner as marker loci. In barley, resistance
genes have been mapped in this way
for many diseases. For some crop–plant
diseases and under many environmental
conditions, plants exhibit partial resistance
to disease. In these cases, disease responses
are assessed as quantitative traits (usually
as measurements or ratings of symptom
severity) and disease-resistance genes are
mapped using QTL analysis.

Using simple rating-scale data for
the symptom severity of several naturally
occurring diseases in the field, Spaner et al.
(1998) were able to map QTL affecting up
to 45% of observed variation. For powdery
mildew (caused by Blumeria graminis f. sp.
hordei) and stem rust (caused by Puccinia
graminis f. sp. tritici), QTL were mapped to
within a few centiMorgans of positions that
had been estimated based on the results of
classification data from carefully inoculated
trials. Similarly, for powdery mildew, Falak
et al. (1999) showed that, in a two-rowed
mapping population, a previously known
Mlg locus and a new locus tentatively desig-
nated Ml(TR) could be mapped based on
classification data obtained after inoculation
with specific isolates of the pathogen and
that the same loci could be mapped as QTL
using symptom-severity results from natu-
rally infected field trials. In that study, QTL
analysis also detected a third locus, and an
analysis based on both the classification data
and the quantitative data suggested a fourth
locus with minor effects.

For stripe rust (caused by Puccinia
striiformis f. sp. hordei), several resistance
genes have been mapped based on observa-
tions of qualitative responses in barley seed-
lings and several QTL have been mapped
based on observations of symptom severity
in seedlings and adult plants (Chen et al.,
1994; Thomas et al., 1995; Hayes et al., 1996;
Toojinda et al., 2000). QTL contributing
to stripe-rust resistance have been used
successfully in marker-assisted selection
(Toojinda et al., 1998).

Currently, the most important disease
challenge facing barley production is Fusar-
ium head blight (FHB) (caused by Fusarium
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graminearum). Through effects on grain
yield and through contamination of the
grain with mycotoxins, this disease has dev-
astating effects on barley production. As no
sources of complete (qualitative) resistance
have been identified, this disease problem
has been the subject of intensive QTL map-
ping, and marker-assisted selection efforts
are under way. De la Pena et al. (1999) and
Zhu et al. (1999b) have published QTL
results for six-rowed and two-rowed barley,
respectively. De la Pena et al. (1999) identi-
fied several QTL that they considered
useful targets for marker-assisted selection,
and one for which the resistance allele had
an association with late heading. Zhu et al.
(1999b) detected QTL for FHB resistance
on six barley chromosomes, and noted that
most of these coincided with QTL determin-
ing plant height and/or spike morphology.
They suggested that the development of
FHB-resistant barley cultivars will require
an understanding of the biology underlying
coincident QTL between plant-architecture
traits and FHB resistance.

QTL Validation in Barley

Detection of QTL and estimation of QTL
positions and effects are subject to various
sources of experimental error and bias.
Mapping experiments may detect spurious
QTL or may fail to detect real QTL. They
may over- or underestimate the true effects
of QTL and they are unable to provide
precise estimates of QTL position. In barley,
several attempts have been made to experi-
mentally validate the existence, location
and positions of putative QTL.

For the six-rowed mapping population
‘Steptoe’/‘Morex’, Larson et al. (1996) used
marker-assisted back-crossing to transfer
alleles at two yield QTL from ‘Steptoe’ into
‘Morex’. They detected significant effects on
grain yield for one QTL but not for the other.
For the same population, Romagosa et al.
(1999) verified the effects of four QTL on
grain yield but found that effects were more
consistent for some QTL than for others.
Similarly, Han et al. (1997) applied marker-

assisted selection for two ‘Steptoe’/’Morex’
malting-quality QTL and found that it was
more effective than phenotypic selection,
but only for one of the two QTL. Zhu et al.
(1999a) pyramided alleles for which favour-
able grain-yield effects had been detected in
‘Steptoe’/’Morex’. Although most of the loci
showed significant effects, the significance,
magnitude and direction of these effects
varied across environments, and epistatic
interactions were detected among QTL.
Kandemir et al. (2000) used marker-assisted
back-crossing to transfer large chromosome
fragments from grain-yield QTL regions
from ‘Steptoe’ into ‘Morex’. They found
effects on yield-related traits but no signifi-
cant effects on grain yield itself.

Using marker-based selection within
a new sample of ‘Harrington’/‘TR306’
progeny (i.e. lines not used in the original
mapping experiment), Igartua et al. (2000)
confirmed the existence of favourable grain-
and malt-quality QTL alleles on chromo-
some 7(5H) of ‘Harrington’. In the same
material, Spaner et al. (1999) confirmed
the effects of these QTL on agronomic
traits. Igartua et al. (2000) were unable
to definitively confirm the existence of
two smaller-effect malting-quality QTL that
had been mapped on chromosomes 3 and
6. Nevertheless, selection based on marker
genotypes on all three chromosomes was
effective in selecting progeny lines with
superior malting quality.

The mixed results obtained in these
validation and marker-assisted selection
experiments demonstrate that, while some
of the QTL detected in mapping experi-
ments have repeatable and verifiable
effects, others may be spurious, poorly
mapped or subject to strong interactions
with environmental conditions and/or other
loci. The results of QTL analysis do not pro-
vide a sufficient basis to definitively predict
the optimum genotypic constitution for a
quantitative trait, but they do provide a basis
for formulating hypotheses to be tested in
marker-assisted selection experiments and
for the design of breeding programmes that
involve both genotypic and phenotypic
selection.
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Introduction

Most traits of agronomic importance are
quantitatively inherited. Quantitative traits
(QTs) are genetically controlled by effects of
polygenes that are greatly modified by envi-
ronments. Each of these genes potentially
has a relatively small effect. With the advent
of molecular markers, such as restriction
fragment length polymorphisms (RFLPs),
simple sequence repeats (SSRs) and single
nucleotide polymorphisms (SNPs), high-
density genetic maps can be constructed
and QTs can be associated with molecular
markers. A chromosomal region that is
associated with molecular markers and
with a QT is defined as a quantitative trait
locus (QTL). Plant populations with dif-
ferent genetic structures have been created
for genetic mapping, including F2/F3, back-
cross (BC), doubled haploids (DHs), recom-
binant inbred lines (RILs), near-isogenic
lines (NILs), back-cross inbred lines (BILs)
and various mutants. Development of
advanced statistical methods, such as
composite interval mapping (Zeng, 1993,
1994; Jansen and Stam, 1994) and Bayesian
and Markov chain Monte Carlo analyses
(Satagopan et al., 1996; Uimari et al., 1996),
along with powerful software, has con-
tributed to genetic mapping using data
collected for multiple traits in different
environments.

In QTL analysis, rice (Oryza sativa L.)
has been receiving exceptional attention,
because it has been used as a model plant in
molecular biology. As a primary food source
for more than a third of the world’s popu-
lation, rice has one of the most compact
genomes among cereals, with the smallest
genome of any monocots known. It contains
about 3.5 times as much DNA as Arabi-
dopsis, but only about 20% as much as
maize (Zea mays L.) and about 3% as much
DNA as wheat (Triticum aestivum L.). The
first RFLP map was constructed in the
1980s (McCouch et al., 1988), and two high-
density maps were subsequently developed
(Causse et al., 1994; Kurata et al., 1994),
which have been widely applied to the map-
ping of genes controlling traits of agronomic
importance. Since the first QTL studies (Ahn
et al., 1993; Xu et al., 1993), more than 80
articles with over 1000 QTL had been docu-
mented by 2000. Rice is the first example in
monocot species of the successful cloning of
a major gene (the bacterial blight resistance
gene, Xa21) (Song et al., 1995) and a QTL
(heading date, Hd1) (Yano et al., 2000)
through map-based cloning. In this chapter,
QTL will be viewed globally from different
perspectives, using rice as a model. Several
review articles on rice QTL are also available
elsewhere (McCouch and Doerge, 1995;
Yano and Sasaki, 1997). For general reviews,
the reader may refer to Xu (1997), Liu (1998),
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Lynch and Walsh (1998), Paterson (1998),
Flint and Mott (2001), Kearsey (Chapter 4,
this volume) and Dudley (Chapter 6, this
volume).

QTL Across Environments

QTL analysis involves extracting a genetic
signal from many sources of ‘noise’, such
as those from external environments and
internal genetic backgrounds. For accurate
QTL analysis, the ‘noise’ must be mini-
mized or eliminated. ‘Controlled’ environ-
ments or genetic backgrounds are usually
created for filtering the ‘noise’. Plant
populations used for QTL analysis can
be evaluated in either natural or controlled
environments or both. Controlled environ-
ments can be compared with each other
or with natural environments. If two
environments mainly differ in one macro-
environmental factor, they are considered
to be contrasting or near-iso-environments
(NIEs) and the standard plot-to-plot varia-
tion and other residual microenvironmental
effects can be neglected. If the two environ-
ments are from experiments of different
years or locations, we assume that location
and year effects do not confound the effect
of the macroenvironmental factor.

Near-iso-environments

Some traits need to be measured under NIEs,
where plants respond differently. In this
case, the first environment imposes much
less stress on plants than the second, e.g.
two environments with normal and high
temperature, respectively. The effect of the
stress environment can be measured using
the much-less-stress or normal environment
as a control. A relative trait value is then
derived from two direct trait values mea-
sured in each environment to ascertain the
sensitivity of plants to the stress (see, for
example, Ni et al., 1998). If different plants
have an identical phenotype under the
much-less-stress environment, the direct
trait value in the stress environment can be

used to measure sensitivity. When both
environments impose little stress on plants,
however, one should use relative trait values
instead. A typical example is the photo-
period sensitivity that can only be measured
in NIEs, one with a short day length and
the other with a long day length. A relative
measure for this type of trait (sensitivity)
should be: sensitivity = the difference of
measures in the NIEs, divided by the mea-
sure in one of the NIEs or in the normal
environment when the other is stressful.

Xu et al. (1997) provided an example
of how rice plants respond to photoperiod
and temperature. Using Zhaiyeqing 8/Jingxi
17 DHs, days-to-heading (DTH) and photo-
thermosensitivity (PTS) were measured in
two environments (Beijing and Hangzhou)
that mainly differ in day length and temper-
ature. At the photo-thermosensitive stage,
Beijing has long day length (14.5–15 h)
and low temperature (20–27°C), whereas
Hangzhou has short day length (13–13.5 h)
and high temperature (25.5–30°C). Rice is
considered a short-day plant, and develop-
ment from vegetative to reproductive stages
is promoted under short-day-length and
high-temperature conditions. Differences
in photoperiod and temperature in the two
locations resulted in differences in DTH of 0
to 39 days for individual DH lines (Fig. 9.1).
Using the relative difference, [(DTH
in Beijing − DTH in Hangzhou)/DTH in
Beijing × 100], genes associated with photo-
thermosensitivity were mapped with 155
RFLP and 92 SSR markers. Four chromoso-
mal regions were identified as significantly
associated with DTH (Fig. 9.1) in either or
both locations, whereas LOD scores for the
PTS in these regions were much lower than
2.4. A region on chromosome 7 (G397A–
RM248) was significantly associated with
PTS (LOD = 4.47), which LOD scores for
DTH in both locations were much lower than
2.4 (Fig. 9.1), indicating that this PTS QTL is
independent of the QTL for heading date.

A second example is from CO39/
Moroberekan RILs grown under greenhouse
conditions and exposed to two different
photoperiod regimes (Maheswaran et al.,
2000). Days-to-flowering (DTF) of individ-
ual lines were evaluated under 10 h and 14 h
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day lengths, and loci associated with photo-
period sensitivity were identified based
on the delay in flowering under the 14 h
photoperiod (DTF at 14 h − DTF at 10 h). In
total, 15 QTL were associated with DTF.
Only four of them were also identified as
influencing response to photoperiod. None
of these QTL is allelic to the PTS QTL on
chromosome 7.

Different QTL are identified using direct
and relative trait values and, in rice, DTH
and photoperiod are controlled by different
QTL. On the other hand, direct and relative
traits share some QTL. This means that DTH
and photoperiod sensitivity are genetically
related to some extent. This is because both
traits are related to the basic vegetative
growth that rice plants must achieve in order
to flower. There are QTL mapping studies
undertaken in NIEs, but QTL were mapped
using trait values scored in each environ-
ment rather than using relative measures.
The traits themselves were mapped rather
than the relative response measured under
the NIEs.

Heterogeneous environments

QTL have been studied in multiple environ-
ments with many factors being different
(heterogeneous environments). When the
same mapping population is phenotyped
in different environments, some QTL could
be detected in one environment but not in
others. For the convenience of comparison,
rice QTL mapped in two environments
were selected for sharing analysis (Table
9.1). A total of 159 QTL were identified in
ten QTL mapping reports for 11 categories
of quantitative traits. For different traits,
QTL-sharing frequencies between two
environments range from 9.5% for drought
avoidance to 52.9% for 1000-grain weight,
and, for all traits, on the average, 46 (30%)
of them are shared or common between two
environments. Mean variances explained
by QTL identified for each category of
traits range from 7.1% for panicle number
per plant to 24.4% for flood tolerance. For
all shared QTL, mean variance explained
is 16.7%, whereas for the unshared QTL,
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Fig. 9.1. QTL mapping for photo-thermosensitivity (PTS) in rice under two environments (Beijing and
Hangzhou). Left: Days-to-heading (DTH) distribution in Zhaiyeqing 8/Jingxi 17 DH population planted
in Beijing and Hangzhou. Top right: PTS distribution in the population when PTS was measured by the
difference of DTH in the two environments divided by the DTH in Beijing. Bottom right: QTL identified
for DTH in Beijing and Hangzhou and for PTS (*LOD > 2.4).



it is 10.9%. Major-gene-related QTL (for
flooding tolerance and paste viscosity) had
the highest QTL-sharing frequency. QTL
with large effect (higher proportion of
the variance explained) are shared more
frequently.

When compared across three or more
environments, QTL-sharing frequencies
become lower. For example, a total of 22
QTL for six agronomic traits were identified
in Zhaiyeqing 8/Jingxi 17 DHs, only seven
of which were shared in all three tested
environments (Lu et al., 1996). In three trials
using Tesanai 2/CB F2 and its two equivalent
F3s, eight QTL were identified, two of which
were detected in all three trials (Zhuang
et al., 1997). In another report, three of
11 QTL identified for leaf rolling were
shared in the three trials with different
drought-stress intensities (Courtois et al.,
2000).

In QTL mapping, permanent popula-
tions, such as DHs and RILs, are now used

more often because of their inherent advan-
tages of providing permanent DNA supply
and phenotyping opportunities for many
different studies. In rice, there are 14 perma-
nent populations reported so far (Table 9.2),
including two DH, nine RIL and one BIL
populations, with population sizes of 65
to 315. Genetic maps used for QTL studies
consist of 113 to 399 molecular markers.
These populations have been used in up
to 15 research projects for 161 trial-trait
combinations, with 682 QTL reported. One
of the DH populations, IR64/Azucena, has
been shared internationally for the mapping
of many agronomic traits, disease resistance,
cold tolerance and water-stress tolerance.
Two other widely used populations are
Zhaiyeqing 8/Jingxi 17 DHs and Lemont/
Teqing RILs. Allelic differences and genetic
polymorphism, however, are limited among
these populations, since each cross has only
two alleles segregating at each polymorphic
locus.
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Number of QTL Mean VE

Trait Total Shared (%) Total Shared (%) Unshared Reference

Yield
Panicle per plant

Grain per panicle

1000-Grain weight

Root
Drought avoidance
Flood tolerance

Aluminium tolerance
Disease resistance

Seedling vigour

Paste viscosity

15
7

16

17

30
21
12

4
17

13

7

2 (13.3)
3 (42.9)

4 (25.0)

9 (52.9)

9 (30.0)
2 (9.5)
3 (25.0)

2 (50.0)
7 (41.2)

3 (23.1)

2 (28.6)

8.7
7.1

11.7

12.7

11.8
9.8

24.4

12.5
10.4

16.0

19.3

12.8
6.7

12.9

14.0

15.0
10.2
48.8

16.0
11.0

19.5

37.7

8.1
7.4

11.3

11.1

10.4
9.8

16.3

9.0
10.1

14.9

11.9

Yu et al., 1997
Yu et al., 1997;
Li et al., 2000
Yu et al., 1997;
Li et al., 2000
Yu et al., 1997;
Li et al., 2000
Ali et al., 2000
Courtois et al., 2000
Sripongpangkul
et al., 2000
Wu et al., 2000
Tang et al., 2000;
Zou et al., 2000
Redoña and
Mackill, 1996
Bao et al., 2000

Total 159 46 (30.0) 12.6 16.7 10.9

VE, Variance explained.
Traits in each category: Yield – grains (t ha−1); Root – root number, root length and thickness; Drought
avoidance – leaf rolling and relative water content; Flood tolerance – initial plant height, plant-height
increment, internode increment and leaf-length increment; Seedling vigour – shoot length, root length,
coleoptile length and mesocotoyl length; Paste viscosity – peak viscosity, hot-paste viscosity and
cool-paste viscosity.

Table 9.1. Comparison of QTL mapped in two environments using the same populations.



QTL × E interaction

QTL can be studied under adverse environ-
ments (abiotic stress), NIEs or a uniform
environment by replicating DH or RIL pop-
ulations and splitting tillers or ratooning a
segregating population. When two or more
environments are involved, QTL– environ-
ment (QTL × E) interaction can be estimated
from a complete analysis of variance
(ANOVA), QTLi + Ej + QTL × Eij, where sig-
nificant QTL × E interactions are assessed
from the significance or lack of significance
of QTL × Eij interaction terms. However,
QTL × E interaction has been predicted
by comparing the QTL detected separately
in different environments in many crops,
including rice (Lu et al., 1996; Zhuang
et al., 1997). That a QTL can be detected
in one environment but not in others, as
discussed earlier, could result from
experimental noise, sampling error or
experimental error, and thus does not

necessarily indicate QTL × E interaction. As
indicated by Jansen et al. (1995), the chance
for simultaneous detection of QTL in multi-
ple environments is small. On the other
hand, sharing QTL among environments
does not necessarily mean no QTL × E inter-
action. This is supported by the fact that
QTL × E interaction was identified for some
sharing QTL by incorporating QTL × Eij into
QTL analysis (Yan et al., 1999) and by
the fact that QTL effects estimated across
environments could be very different.

QTL Across Genetic Backgrounds

Homogeneous genetic backgrounds

Populations developed for QTL analysis
can be very heterogeneous in genetic
backgrounds, with hundreds or thousands
of genes segregating simultaneously, or
very homogeneous, with only a target gene
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Population Population size No. of markers No. of traits No. of QTL

1. IR64/Azucena DH
2. Zhaiyeqing 8/Jingxi 17 DH
3. 9024/LH422 RIL
4. CO39/Moroberekan RIL
5. Lemont/Teqing RIL
6. IR58821/IR52561 RIL
7. IR74/Jalmagna RIL
8. Nipponbare/Kasalath BIL
9. Zhenshan 97/Minghui 63 RIL

10. Asominori/IR24 RIL
11. Acc8558/H359 RIL
12. IR1552/Azucena RIL
13. IR74/FR13A RIL
14. IR20/IR55178-3B-9-3 RIL

105–135
132
194

143–281
255–315

166
165
98

238
65

131
150
74
84

146–175
137–243

141
127

113–217
399
144
245
171
289
225
207
202
217

56
35
25
14
8
5
5
4
3
2
1
1
1
1

215
115
74

121
46
28
18
19
6

17
11
4
4
4

Overall 65–315 113–399 161 682

References
1: Lorieux et al., 1996; Ghesquière et al., 1997; Huang et al., 1997; Taguchi-Shiobara et al., 1997; Yadav
et al., 1997; Alam and Cohen, 1998; Albar et al., 1998; Pressoir et al., 1998; Wu et al., 1998; Yan et al.,
1998a,b, 1999; Courtois et al., 2000; Hemamalini et al., 2000; Zheng et al., 2000. 2: Lu et al., 1996; He
et al., 1998, 1999; Zhang et al., 1999; Bao et al., 2000; Qian et al., 2000a,b; Gong et al., 2001; Liu et al.,
2001. 3: Xiao et al., 1995, 1996. 4: Wang et al., 1994; Champoux et al., 1995; Lilley et al., 1996; Ray
et al., 1996; Maheswaran et al., 2000. 5: Li et al., 1995a,b, 1997, 1999; Tabien et al., 2000. 6: Ali et al.,
2000. 7: Sripingpangkul et al., 2000. 8: Taguchi-Shiobara et al., 1997; Lin et al., 1998. 9: Tan et al.,
2000. 10: Sasahara et al., 1999. 11: Tang et al., 2000. 12: Wu et al., 2000. 13: Nandi et al., 1997.
14: Ni et al., 1998.

Table 9.2. Rice permanent populations used in genetic mapping.



segregating. Homogeneous or isogenic back-
grounds can be created through one of the
following five approaches.

1. Back-cross-derived NILs. NILs are gen-
erated by introgression, and the resulting
inbred lines differ at the targeted locus
or region. Introgression is accomplished by
repeatedly back-crossing one line carrying a
gene of interest (donor parent) to another
line that has other desirable properties
(recurrent parent).
2. Selfing-derived NILs. NILs are derived
through continuous selfing while keeping
the target trait locus heterozygous. Once
other genetic backgrounds are almost all
fixed, an additional generation of selfing
will result in a pair of NILs that differ only
at the target locus (Xu and Zhu, 1994).
Selfing-derived NILs, however, can be any
combination of parental genotypes, whereas
the back-cross-derived NILs have the same
genetic constitution as the recurrent parent.
3. Whole-genome selection of permanent
populations. With the availability of perma-
nent mapping populations, such as RILs and
DHs, it is possible to find two of them that,
except for one or a few marker loci, are
almost genotypically identical for the whole
genome.
4. Mutation. The creation of a collection of
single-locus mutants is a quick approach to
producing a large number of NILs. For most
mutants, mutation only happens at one or
few genetic loci. These mutants can be con-
sidered near-isogenic to their ‘wild type’ and
are thus called isomutagenic lines (IMLs).
5. Chromosome substitution. Through
chromosome engineering and/or marker-
assisted selection (MAS), whole or partial
chromosome-substitution lines can be cre-
ated, so that each line has one chromosome
or partial chromosome replaced.

Genetic materials, such as NILs with
homogeneous backgrounds, have been used
in many different investigations. If NILs are
used, interaction between the target QTL
and other major genes/QTL can be elimi-
nated and only epistasis between multiple
target QTL needs to be considered. With
removal of noise from heterogeneous

backgrounds, the proportion of variance
explained by the target QTL will increase
and minor QTL can be identified. Without
disturbance from the background effect,
multiple QTL can be easily partitioned.
Since all genotypic variation comes from
the target loci, environmental effects can be
estimated. In QTL cloning, NILs have been
used to map the target QTL precisely by
using all of these advantages.

Heterogeneous genetic backgrounds

Although the genetic distances and order of
DNA markers are comparable among very
different rice crosses (Antonio et al., 1996),
QTL mapping using different populations
derived from the same cross has identified
very different QTL. Only some QTL are
common across populations of different
structures, such as DHs and RILs derived
from a single cross (He et al., 2001), where
there is an identical set of genes segregating.
Heterogeneous genetic backgrounds can
also come from various crosses derived
from different varieties, subspecies, species
and families. Genetic materials with hetero-
geneous genetic backgrounds can be used to
estimate epistasis, detect non-allelic QTL,
discover multiple alleles and identify para-
logous and orthologous QTL. Molecular
markers developed in rice have been sel-
ected as anchor markers for cross-mapping
in cereals. The use of anchor markers has
enabled the detection of possible ortho-
logous QTL by comparing QTL across
cereals or the construction of phylogenetic
relationships. Although it is unclear how
many claimed orthologous QTL are real,
detection of QTL that are common across
cereals at least indicates that the same QTL
could be identified from very different
genetic backgrounds.

As a contribution to complicated genetic
backgrounds, many quantitative traits per se
are a complex consisting of several compo-
nents or subtraits. In rice, for example, poly-
genic sterility can be partitioned into several
components, including male and female
sterility, or ovary and pollen abortion, so
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that polygenes can be divided into several
components with different functions and
thus can be handled with ease. Genetic
backgrounds in a population can also be
complicated by the contribution of other
related traits. Most QTL reported in the
literature are based on separate single-trait
analyses. Joint analysis of multiple traits
will improve QTL mapping power and pre-
cision and provide the capability of testing
linkage versus pleiotropy, where QTL in
apparently the same region affect two dis-
tinct traits (Jiang and Zeng, 1995). That these
methods have not been widely adopted is
probably a reflection of their relative statisti-
cal complexity. Use of multitrait analysis
should expand as suitable software becomes
more widely available.

Epistasis

The importance of epistasis to the genetic
control of QTs has been debated. There are
two major reasons for contradictory reports
or infrequent discovery of QTL interactions,
especially at the early stage of QTL map-
ping. First, contradictory reports may result
from the fact that QTL mapping studies and
analytical methods have not been able to
detect epistasis and thus the conclusions
could be biased, preferentially identifying
genes that have large effects and/or act
independently (Xu, 1997). This argument
is supported by the results that QTL with
large effects are detected in very different
crosses and environments. The second rea-
son is that ordinal QTL analysis was made
with populations segregating for the whole
genome simultaneously, so that it may
be difficult to detect an interaction in a
specific combination of QTL genotypes. For
example, Yano et al. (1997) predicted an
interaction between the two largest QTL,
Hd1 and Hd2,  for  heading  date.  But  the
existence of another QTL, Hd6, and its
interaction could not be detected in their
primary population (F2), where many epi-
static interactions could exist in so-called
minor QTL. Successful examples of the
detection of epsitatic interactions by using

primary populations seem to be related to
population sizes and structures, QTs, the
number of existing QTL and QTL effects.
The more QTL involved, the more difficult
is the detection of significant differences
for individual QTL. Although using a large
population size may help to detect epistatic
interactions, it increases experimental
errors, due to increasing difficulty in
managing such a population effectively. To
improve confidence, different types of plant
materials have been constructed. A series
of chromosomal substitution lines or NILs
with QTL (QTL-NILs) have been developed,
and the gene actions of QTL have been
analysed in detail.

Alleles at multiple loci

When multiple QTL control a trait,
their alleles of positive or negative effect
(increasing or decreasing trait value) tend
to be dispersed between parents, each with
positive alleles at one or some loci but nega-
tive alleles at other loci. These dispersed
alleles can be cryptic transgressive, which
can be found even in parents with similar
phenotypes. For example, genotypes AAbb
and aaBB have the same phenotype when
a trait is determined by two unlinked loci
with additive effect. If these two genotypes
were mated to each other and F1 progeny
selfed, the resulting F2 progeny array would
span the entire range of phenotypes, from
some genotypes (AABB) with higher pheno-
typic values than either parent to others
(aabb) with lower phenotypic values than
either parent. It is such extreme trans-
gressive individuals that are often of great-
est value in breeding. In rice, dispersed
alleles for tiller angle were identified in four
varieties with similar phenotype. Associa-
tion of these alleles was realized by selec-
tion of phenotypic extremes in their F2s,
resulting in fixed transgression (Xu et al.,
1998). In QTL mapping, phenotypic differ-
ence between parents is not necessary for
the detection of QTL. In most cases where
no parental difference is found, QTL are
still detected, which could be due to the
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QTL Major gene Linked marker Population Reference

qPH1-1

qPH1-2

qPH1-3
qPH2-1
qPH2-2

qPH2-3
qPH2-4
qPH2-5

qPH3-1

qPH3-2

qPH3-3

qPH4-1
qPH4-2

qPH5-1
qPH5-2

qPH6-1

qPH6-2

qPH7-1
qPH7-2
qPH7-3
qPH7-4
qPH8-1

qPH8-2
qPH8-3

sd-1

d-18

d-5

d-32
d-30

d-56

d-31
d-11

sdg

d-58

d-9

RZ730-RZ801

RZ730-RG381
RZ649-RG374
OSR23
RG331
RZ776-RG375
RZ744
RG612
RZ213
RG654-RZ260
RG256-RG324

Amy1C-RG95
RZ213-RG95
RZ166
RG157
RZ599-RG544

RG418-RM148
RG418-RG910
G62-G144
XNbp249-RZ16

RG348-RZ329
RG348-RG944
RG348-RG409

RG104
RG143-RG620
RG163-RZ590
G513-G271
RG864
RG182-RG9
RG480-RG697

RZ682-RG653

RZ682-CDO544
RG64
RZ667-RG648
RG351
RG146-CDO497
C285-G20
RG528
RG333-RZ562

RG20-RG1034
RG885-RZ617
RZ562-RG978
G1073-RG1
Amy3D-RZ66

Zhaiyeqing 8/Jingxi17 DH
IR64/Azucena DH
Palawan/IR24 F2
Tesanai 2/CB F2
IR64/TOG5681//IR64
CO39/Moroberekan RIL
9042/LH422 RIL
CO39/Moroberekan RIL
CO39/Moroberekan RIL
IR64/Azucena DH
Lemont/Teqing RIL
Tesanai 2/CB F2
Tesanai 2/CB F3
IR64/Azucena DH
Waiyin/CB F2
Palawan/IR24 F2
Waiyin/CB F2
9042/LH422 RIL
9024/LH422 RIL//9042
IR64/TOG5681//IR64
IR64/Azucena DH
Zhaiyeqing 8/Jingxi17 DH
9024/LH422 RIL//9042
9024/LH422//LH422
IR64/Azucena DH
Lemont/Teqing RIL
Tesanai 2/CB F2
Tesanai 2/CB F3
CO39/Moroberekan RIL
Tesanai 2/CB F2
IR64/Azucena DH
Zhaiyeqing 8/Jingxi17 DH
CO39/Moroberekan RIL
Tesanai 2/CB F2
9024/LH422 RIL//9042
9024/LH422 RIL//LH422
9042/LH422 RIL
9024/LH422 RIL//9042
9024/LH422 RIL//LH422
9042/LH422 RIL
CO39/Moroberekan RIL
Waiyin/CB F2
CO39/Moroberekan RIL
9042/LH422 RIL
Zhaiyeqing 8/Jingxi17 DH
CO39/Moroberekan RIL
9024/LH422 RIL//9042
9024/LH422 RIL//LH422
9042/LH422 RIL
Lemont/Teqing RIL
Zhaiyeqing 8/Jingxi17 DH
Tesanai 2/CB F2
Zhaiyeqing 8/Jingxi17 DH
IR64/Azucena DH

Lu et al., 1996
Yan et al., 1999
Wu et al., 1996
Zhuang et al., 1997
Lorieux et al., 2000
Huang et al., 1996
Xiao et al., 1996
Huang et al., 1996
Huang et al., 1996
Yan et al., 1999
Li et al., 1995a
Zhuang et al., 1997
Zhuang et al., 1997
Yan et al., 1999
Huang et al., 1996
Wu et al., 1996
Huang et al., 1996
Xiao et al., 1996
Xiao et al., 1995
Lorieux et al., 2000
Yan et al., 1999
Lu et al., 1996
Xiao et al., 1995
Xiao et al., 1995
Yan et al., 1999
Li et al., 1995a
Zhuang et al., 1997
Zhuang et al., 1997
Huang et al., 1996
Zhuang et al., 1997
Yan et al., 1999
Lu et al., 1996
Huang et al., 1996
Zhuang et al., 1997
Xiao et al., 1995
Xiao et al., 1995
Xiao et al., 1996
Xiao et al., 1995
Xiao et al., 1995
Xiao et al., 1996
Huang et al., 1996
Huang et al., 1996
Huang et al., 1996
Xiao et al., 1996
Lu et al., 1996
Huang et al., 1996
Xiao et al., 1995
Xiao et al., 1995
Xiao et al., 1996
Li et al., 1995a
Lu et al., 1996
Zhuang et al., 1997
Lu et al., 1996
Yan et al., 1999

Table 9.3. Plant-height QTL identified across rice populations and corresponding major genes.



complementary patterns of positive and
negative allelic effects.

As observed in QTL mapping, on the
average, about four QTL are identified for
each trait (Tables 9.1 and 9.2), the same
as the average obtained for 176 trial-trait
combinations as reviewed by Kearsey and
Farquhar (1998). When QTL identified for
the same trait are summarized over different
projects/populations, this number becomes
much larger. For example, plant height has
been mapped, using 13 populations, with 63
QTL reported. Some of the QTL are allelic to
each other, i.e. they were mapped to the
same chromosomal region or intervals of less
than 15 cM. After elimination of possible
allelic QTL, the total number of QTL for
plant height is reduced to 29, with up to five
QTL existing on a chromosome (Table 9.3).
The QTL qPH1-1, which corresponded to
a major semidwarf gene sd-1, and qPH8-1
were each detected in six populations. QTL
qPH2-2 and qPH3-3 were each detected in
five populations. Over 50 major genes for
dwarf and semidwarf mutants have been
found (Kinoshita, 1995), and 14 of them have
been linked to molecular markers (Huang
et al., 1996; Kamijima et al., 1996), with 13 of
them (93%) colocalized with plant-height
QTL. More plant-height QTL will probably
be colocalized with major loci, as more major
loci are linked with molecular markers.
These colocalizations support Robertson’s
(1985) hypothesis that alleles for qualitative
mutants are simply ‘lost-function’ alleles
at the same loci underlying quantitative

variation. Until QTL are mapped to higher
degrees of precision and/or cloned, how-
ever, it would be difficult to prove that
the particular QTL actually correspond to
known loci defined by macromutant alleles
and which QTL are allelic to each other.
The QTL allelism test and the determination
of the major-gene and QTL correspondence
depend on the availability of high-density
molecular maps with a common set of
markers shared among researchers.

Multiple alleles at a locus

Two-parent derived populations in crops
like rice usually have only two alleles
segregating at each locus. Identification
of multiple alleles requires comparison of
populations derived from different crosses.
To distinguish QTL alleles identified in one
cross from those in another, all mapped
alleles must be accurately sized and
documented.

As an example of multiple alleles at
a locus, rice amylose content, mainly con-
trolled by the wx gene, will be discussed.
Wide variation in amylose content occurs
and varieties with different amylose content,
varying from waxy (0–2%), very low (3–9%),
low (10–19%) and intermediate (20–25%) to
high (> 25%), have been selected in breeding
programmes. Conventional genetic studies
using varieties with different amylose con-
tent revealed transgressive segregation in F2s
in almost all possible parental combinations
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QTL Major gene Linked marker Population Reference

qPH9-1

qPH10-1

qPH11-1
qPH12-1
qPH12-2

d-27
d-33

RZ9106-RZ777
RZ422-Amy3ABC
G1082-G291
RZ625-CDO93
RG257
RG118
RG869
RG235-RG341
RG574

Lemont/Teqing RIL
IR64/Azucena DH
Zhaiyeqing 8/Jingxi17 DH
IR64/Azucena DH
CO39/Moroberekan RIL
Tesanai 2/CB F3
CO39/Moroberekan RIL
Tesanai 2/CB F2
CO39/Moroberekan RIL

Li et al., 1995a
Yan et al., 1999
Lu et al., 1996
Yan et al., 1999
Huang et al., 1996
Zhuang et al., 1997
Huang et al., 1996
Zhuang et al., 1997
Huang et al., 1996

The same QTL locus name is designated to the linked markers located within a 15 cM region. The
plant-height QTL is named ‘qPH’ plus chromosome numbers (the first number after ‘qPH’) and locus
number (the second number after ‘qPH’). The corresponding major genes are determined based on
genetic linkage between these genes and molecular markers (Huang et al., 1996; Kamijima et al., 1996).

Table 9.3. Continued.



(Pooni et al., 1993). Recently, a polymorphic
microsatellite was identified in the wx gene
(Bligh et al., 1995), located 55 bp upstream
of the putative 5′ leader-intron splice site.
Ayres et al. (1997) determined the relation-
ship between polymorphism at that locus
and variation in amylose content. Eight wx
microsatellite alleles were identified from
92 long-, medium- and short-grain US rice
cultivars, which explained 85.9% of the
variation. The amplified products ranged
from 103 to 127 bp in length and contained
(CT)n repeats, where n ranged from 8 to 20.
Average amylose content in varieties with
different alleles varied from 14.9% to 25.2%.
Using more diverse rice germ-plasm acces-
sions (n = 243), Zeng et al. (2000) identified
15 alleles at the wx locus, using micro-
satellite class and G–T polymorphism,
resulting in a total of 16 alleles identified so
far. Now the question is whether the multi-
ple alleles identified at the waxy locus can
be associated with QTL alleles and whether
the case can be extended to other traits or
genetic loci.

Using molecular markers with multiple
alleles in QTL mapping will help identify
multiple QTL alleles. QTL studies using
different populations have identified some
common QTL. It is necessary, however,
to further clarify whether they identified
common or different alleles at these QTL.
Reporting the sizes of associated alleles
and using allele-rich markers in QTL studies
will provide the information required for
clarification, with the assumption that each
marker allele has a corresponding QTL
allele.

QTL Across Growth and
Developmental Stages

Measures of agricultural productivity usu-
ally reflect the effects of many genes acting
at different times during the period of growth
and development of an organism. Genetic
expression of QTs varies greatly with devel-
opment stage, and some QTL may be turned
on or off at specific stages or may respond to
environmental changes over different stages
(Xu, 1997). The developmental genetics of

QTs has been studied using conventional
quantitative genetics. In rice, for example,
genetic analysis of tiller number was made
at different growth stages (Xu and Shen,
1991). Using six indica rice varieties and
their diallel F1s, tiller number was counted
at a 10-day interval after transplanting. An
identical polygenic system was found to be
responsible for tillering ability at different
growth stages. For the terminal character,
productive tiller number, gene effects chan-
ged with growth stages. Non-additive gene
action and environmental effect decreased,
but additive gene action increased with the
progressive development of plants.

Most QTL studies have so far been
focused on trait values measured at a
specific stage or the final growth stage. This
static mapping strategy could not fully reveal
the action of genes during the development
of traits. To understand genetic expression
at different developmental stages, dynamic
mapping has been proposed (Xu, 1994,
1997; Xu and Zhu, 1994). There are three
approaches to dynamic analysis or time-
related mapping. One is based on the
analysis of trait values measured at each
observation time (Bradshaw and Settler,
1995; Plomion et al., 1996; Price and Tomos,
1997; Verhaegen et al., 1997), from which
the accumulated effect of a QTL, from the
beginning of ontogenesis to each observation
time, can be estimated. This is called effect–
accumulation analysis or unconditional
QTL mapping (Yan et al., 1998a). The sec-
ond approach is to analyse trait-value incre-
ments observed at sequential time intervals
(Bradshaw and Settler, 1995; Plomion et al.,
1996; Verhaegen et al., 1997), from which
the incremental or net effect of a QTL at each
time interval can be estimated. This is called
effect-increment analysis or conditional
QTL mapping (Yan et al., 1998a). Pheno-
typic data collected at different growth
stages or time intervals can be analysed
either separately or jointly. Compared with
separate analysis, joint analysis can synthe-
size all the information from different times
or time intervals to give a comprehensive
estimate of each QTL position, according to
which a corresponding complete expression
(or expression rate) curve of each QTL can be
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estimated (Wu et al., 1999). In practice, both
separate and joint analyses should be con-
ducted. A third approach to looking at a QTL
over time is to do a multivariate analysis
based on fitting the parameters of the growth
curve (animal breeders call this general
approach ‘random regression’).

Using IR64/Azucena DHs, Yan et al.
(1998a,b) studied the developmental charac-
teristics of QTL for tiller numbers and plant
height by conditional and unconditional
interval mapping, in combination with
phenotyping these traits every 10 days after
transplanting. They concluded that many
QTL identified at early stages were undetect-
able at the final stage. Conditional mapping
identified more QTL than unconditional
mapping. Temporal patterns of gene expres-
sion changed with developmental stages.
Genes at a specific genomic region might
have opposite genetic effects at various
growth stages. For chromosomal regions
significantly associated with plant height,
conditional QTL were found only at one
to several specific periods and no QTL for
plant height was continually active during
the entire period of growth.

QTL in Association Genetics

The breadth of genetic information from
thousands of DNA polymorphisms and the
depth of phenotypic measure hold promise
for identifying marker–trait correlation.
Allele association between marker loci and
association between marker alleles and phe-
notypes can be designated as marker–marker
association and marker–trait association,
respectively. In humans, genetic-association
studies have been used to assess correla-
tions between variant genotypes and trait
phenotypes on a ‘population’ scale (or a
group of human beings). The power of asso-
ciation analysis to detect genetic contribu-
tion to complex diseases is considered to be
much greater than that of linkage studies
(Risch, 2000). At a fundamental level, both
genetic association and linkage rely on
the coinheritance of adjacent DNA variants,
with linkage capitalizing on this by identi-
fying haplotypes that are inherited intact

over several generations and association
relying on the retention of adjacent DNA
variants over many generations. Thus, asso-
ciation studies can be regarded as very large
linkage studies of unobserved, hypothetical
pedigrees (Cardon and Bell, 2001). Recom-
bination is the primary force that eliminates
linkage and association over generations.

In theory, marker–trait association can
be established based on either the pheno-
typic differences associated with alternative
marker genotypes (Lander and Botstein,
1989) or on the difference of allele freq-
uencies between phenotypic extremes in a
derived population (Lebowitz et al., 1987).
Differences in both phenotype and allele
frequency can be identified in a group of
cultivars that are derived from a common
ancestral gene pool (Xu and Zhu, 1994). The
procedure is regarded as an initial screening
for identification of QTL (Bar-Hen et al.,
1995; Virk et al., 1996). The development of
saturated linkage maps and highly informa-
tive microsatellite markers in rice makes it
possible to systematically survey marker–trait
association on a whole-genome scale. Com-
pared with transmission-based genetic map-
ping, association-based mapping provides
more opportunities for breeding applications,
since hundreds of germ-plasm accessions
that are useful as parents in breeding are
involved. It is worth determining whether
this mapping strategy will be useful in agri-
cultural species, such as inbred plants,
where pedigree information is widely avail-
able but inbreeding is not strictly controlled,
resulting in genetic impurities in putative
inbred lines. Attempts have been made in
rice to detect marker–trait association based
on the use of unmapped randomly amplified
polymorphic DNA (RAPD) markers (Virk
et al., 1996). As more and more germ-plasm
accessions are evaluated with molecular
markers and phenotyped for agronomic
traits, it is essential to consider using the
association-based approach to map genes or
at least to provide a prescreen for linkage-
based genetic mapping.

As an example, association genetics
was used in rice to reveal marker–marker
association and marker–trait association (Y.
Xu and S.R. McCouch, Cornell University,
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unpublished data). Based on genetic diver-
sity and ancestral relationship, 237 rice
accessions collected from around the world
were classified as all rice accessions, US rice
varieties, Cypress-pedigree-related varieties
and worldwide complex. With genotypic
data for 100 RFLP and 60 SSR marker loci
and phenotypic data for 12 traits, a stronger
marker–marker association was found in
the varietal groups that had greater genetic
variation or closer pedigree relationship, as
revealed by correlation coefficients between
allele sizes of markers. Markers within
linkage groups showed stronger allelic
association than markers between linkage
groups, indicating that marker–marker asso-
ciation in rice germ-plasm was influenced
by genetic linkage to some extent. The
statistical associations, however, could not
be interpreted solely from genetic linkage.
Comparison of marker–trait association in
different varietal groups demonstrated that
both phenotypic variation and pedigree
relationship among rice accessions strongly
influenced the association detection. A
highly consistent allele–trait association was
revealed among multiple alleles at a given
locus. Marker–trait associations identified
were compared with the markers genetically
linked with major genes and QTL. Although
more work is needed for accurate corres-
pondence among classical genetic loci,
reported QTL and marker–trait associations,
several chromosomal regions as hot spots
for marker–trait associations have been
assigned to QTL clusters.

Evidence of allelic association or
marker–trait association does not always
imply that two loci are linked. A spurious
association can be generated by random
genetic drift, founder effect, mutation, selec-
tion and/or population admixture and strati-
fication (Sham, 1997). Human geneticists
account for any potential population sub-
structure/stratification by using a transmis-
sion–disequilibrium test (TDT) (Lynch and
Walsh, 1998). Recombination tends to erode
linkage disequilibrium, and the erosion is
slow between closely linked loci. For exam-
ple, for loci that are 1 cM apart, more than
50% of the initial disequilibrium remains
after 50 generations (Falconer and Mackay,

1996). Therefore, putative associations
require confirmation based on analysis of
multiple samples from genetically isolated
groups or relatively homogeneous groups of
germ-plasm or by using ‘linkage genetics’
with a standard population derived from
two known varieties.

For several reasons, there is great enthu-
siasm at present about the promise of associ-
ation studies for uncovering the genetic
components of complex traits in humans:
dense SNP maps across the genome, elegant,
high-throughput genotyping techniques,
simultaneous comparison of groups of loci,
statistical measures for assessing genome-
wide significance and phenotypic insights
that might accompany comparative genomic
studies among different human groups. All
these conditions have already been or will be
satisfied and association studies will inevi-
tably proliferate in plants like rice. Now it is
the time to consider critically the design of
such studies. In molecular breeding, there
is increasing demand for the establishment
of molecular profiles for each germ-plasm
accession, so that specific germ-plasm
accessions can be selected based on breeding
purposes. In this process, a large number of
germ-plasm accessions will be genotyped
with hundreds of molecular markers. This
becomes feasible with the development of
highly informative DNA markers and high-
throughput genotyping technology. Several
institutions have started to profile rice germ-
plasm on a large scale and a huge amount
of data is being generated. It is apparent
that molecular marker-based germ-plasm
evaluation will produce a large data set that
can be explored for association-genetics or
linkage-disequilibrium study.

QTL in Breeding Programmes

There is every reason to believe that
plant breeding in the 21st century will still
depend, to a great extent, on conventional
methods for phenotypic selection. Molecu-
lar biology could help improve recombinant
frequency for favourable alleles and select
the traits that are not measurable under
normal environments with conventional
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methods. Using molecular markers in plant-
breeding programmes has been discussed
elsewhere (Beckmann and Soller, 1986;
Paterson et al., 1991; Dudley, 1993; Stuber,
1994; Xu and Zhu, 1994; Lee, 1995;
Hospital and Charcosset, 1997; Xu, 1997;
Mackill and Ni, 2001). In this section, dis-
cussion will focus on how genetic mapping
will improve our breeding process for some
special traits.

Selection without test crossing and/or
a progeny test

In plant breeding, many traits need test
crossing and a progeny test for unambigu-
ous identification. Typical examples in rice
include male-sterility restorability, wide
compatibility, heterosis, combining ability,
outcrossing ability and a recently named
trait in plants, loss of heterozygosity (Wang
et al., 1999). In test crossing, each candidate
plant will be crossed to testers and then its
genotype will be inferred from a progeny
test in the next season. Each candidate plant
must be harvested and maintained sepa-
rately and only the plants with the target
trait will advance to the next level. Test
crossing may continue for several genera-
tions until the selected plants reach a cer-
tain level of homozygosity. In back-crossing
programmes handling recessive traits, an
additional selfing generation is required for
the progeny test in order to make sure that
the plants used for back-crossing contain
the target gene. Using MAS, test crossing
and/or a progeny test can be eliminated,
since the target trait can be identified
from the candidate plant itself, based on
DNA-marker analysis, saving laborious test
crossing and time-consuming progeny tests.

Selection independent of environments

Many traits must be screened in specific or
controlled environments where they can be
fully expressed. For example, photoperiod
or temperature sensitivity can only be iden-
tified by comparison of their phenotypes

in two distinct photoperiod or temperature
conditions, as discussed earlier. For identi-
fication of insect/disease resistance, plants
must be inoculated artificially or naturally.
For abiotic resistance, such as salinity and
submergence tolerance and lodging resis-
tance, selection in traditional breeding pro-
grammes can only be done when the spe-
cific stress is present. To measure responses
to agrochemicals, such as herbicides and
plant-growth regulators, these chemicals
must be applied to plants at the right
stage under suitable environments. MAS
has made it possible to perform indirect
selection for these traits, using tightly
linked molecular markers.

Selection without laborious fieldwork or
intensive laboratory work

Many important traits are phenotypically
invisible or unscorable by visual observa-
tion and must be measured in the laboratory
using sophisticated equipment or facilities,
or a large number of samples is required,
which means that it cannot be measured
until late generations when a relatively large
amount of seed becomes available for each
selection entry. Grain chemical and physical
properties are examples that fall under this
category. Traits such as tissue culturability
need laborious laboratory work for testing
each sample. Using MAS, a piece of leaf
harvested at any growth stage of plants will
be enough for accurate measurement of all
the traits mentioned above, once closely
associated markers have been identified.

Selection at an early breeding stage

Traits that are only measurable at or after
the   reproductive   stage   would   be   good
candidates for MAS. For example, grain
quality can only be tested using mature
seeds. Yield heterosis and yield potential
must be measured after harvest and/or in
advanced generations. MAS can be made at
any stage and in any generation, so that
breeders do not need to maintain a large
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number of candidate plants generation after
generation.

Selection for multiple genes and/or
multiple traits

In some cases, multiple pathogen races or
insect biotypes must be used to identify
plants for multiple resistances, but, in prac-
tice, this may be difficult or impossible,
because different genes may produce simi-
lar phenotypes that cannot be distinguished
from each other. Marker–trait association
can be used to select multiple resistances
simultaneously and transfer them into a
single line.

Consider selection for multiple traits
– for example, temperature-sensitive genic
male sterility (TGMS), amylose and wide
compatibility. Candidate plants must be
tested under two different environments
where TGMS can be identified. Each
plant must be test-crossed with wide-
compatibility testers, following up with a
progeny test in the next season. At the
same time, a large amount of seed must be
harvested for amylose measurement. Thus,
using conventional selection methods, we
must wait until a large number of seeds are
available and a reasonable level of homozy-
gosity is reached. For all these traits, in MAS,
one just needs a piece of leaf harvested at any
growth stage in any segregating generation.

Whole-genome selection

MAS can also be practised at the whole-
genome level. Whole-genome selection can
be used to eliminate the donor genome in
back-cross breeding or to get rid of linkage
drag when a wide cross is involved.
Compared with a back-cross programme,
which usually takes five to seven genera-
tions to recover most recurrent parental
backgrounds, MAS may save two to four
back-cross generations in the transfer of a
single target allele (Tanksley et al., 1989;
Hospital et al., 1992; Fisch et al., 1999).
Combined with MAS for multiple traits, on

the other hand, whole-genome selection
allows the breeder to transfer multiple traits
through back-crossing simultaneously. QTL
mapping precision is now good enough
for elimination of most linkage drag
that conventional methods cannot achieve
efficiently. As a practical consideration
in MAS, molecular markers used in MAS
should have less requirement for DNA qual-
ity and quantity and be highly informative,
replicable and easy to use (Mackill and Ni,
2001). To reduce the false positives in MAS,
markers must be tightly linked to the target
trait, and flanking markers or multiple
markers around the region could be used
simultaneously. Currently, the cost for MAS
is still too high and only very few genes are
finely mapped. The development of highly
informative molecular markers, such as
SNP, and high-throughput technology will
finally overcome these limitations and
accelerate fine-mapping and MAS. QTs
are greatly affected by genetic backgrounds
(gene interaction) or environmental factors
or both, i.e. gene–environment (G × E) inter-
action (Fig. 9.2). Because of environmental
influence, different genotypes may have a
very similar phenotype, whereas different
phenotypes may come from an identical
genotype. Continuous variation could result
either from the segregation caused by
the interaction of a major gene/QTL with
compound environmental factors or from a
combining effect of many minor QTL. On
the contrary, discrete variation could result
either from the segregation of a major gene
or from a minor QTL with well-controlled
environments. Partition of a complex envi-
ronment into single independent and mea-
surable components can be very helpful.
The levels of QT expression among individ-
uals can be maximized by exposing the
population to appropriate environments.

The effective utilization of molecular-
marker technology and QTL management
in breeding programmes depends on tight
linkage between markers and QTL (Dudley,
1993). Multiple QTL must be manipulated
simultaneously to have a significant impact.
The QTL × E interaction and epistasis
need to be localized and quantified. Other-
wise, the genomic region involved in the
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interactions cannot be incorporated in the
selection scheme and hence the selection
process will be biased. Furthermore, QTL
information obtained from one population
may not mirror that from another popula-
tion, since they may have different QTL
and/or QTL alleles.

QTL and Bioinformatics

With hundreds of QTL mapping reports
published every year, bioinformatics tools
are needed to manipulate huge amounts of
QTL-related data. It is important for all
researchers to follow general rules for QTL
reporting, such as the standardization of
QTL nomenclature, as proposed by McCouch
et al. (1997). A standard reporting system
is critical for comparative genomics, QTL
allelism tests, data sharing and mining
and the association between major genes
and QTL. This system should include:
(i) associated alleles and allele characteriza-
tion, such as allele sizes; (ii) QTL effect;

(iii) variation explained by single and total
QTL or all QTL in the model; (iv) QTL
interaction if more than one QTL is identi-
fied; and (v) the QTL × E interaction if
more than one environment is involved.
QTL information should be shareable and
combined with data generated in genetics
and plant breeding, e.g. germ-plasm diver-
sity, mapping populations, pedigrees, gene
positions and effects, graphical genotypes,
mutants and other genetic stocks.

The explosion of interest in QTL map-
ping has led to numerous studies in plants,
each based on its own experimental pop-
ulation(s). Each experiment is limited in size
and usually restricted to a single population,
or a cross, planted in specific environment(s).
Therefore, QTL effects that can be detected
are also limited. One direction for QTL anal-
ysis is to combine information from several
studies – for example, by meta-analysis of
the results of QTL studies (Goffinet and
Gerber, 2000) or joint analysis of the raw data
(Haley, 1999). Joint analysis using the raw
data potentially allows more information to
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Fig. 9.2. Relationship between phenotypes, genes and environments. Discrete phenotypic distribution
for qualitative traits arises from major genes, bimodal distribution for qualitative–quantitative traits from
the joint effect of a major QTL (with dominant effect) and some minor QTL, and normal distribution for
typical quantitative traits from many minor QTL. With partition and uniformity of environments, some
continuously distributed traits can be converted into a bimodal distribution of discretely distributed traits
(after Xu, 1997).



be extracted than meta-analysis. Walling
et al. (2000) did a joint analysis of data from
seven pig QTL mapping populations from
the UK, France, Germany, Sweden, the USA
and The Netherlands, totalling over 3000
animals. In rice, the RiceGene database is
accessible to the public. Extension of Rice-
Gene to include raw data from QTL mapping
projects will stimulate this effort. Many
permanent populations have been shared
internationally for mapping. The raw data
should be shared, too. A rice RFLP map
constructed by using IR64/Azucena DHs
has been saturated with more than 500 SSR
markers (Chen et al., 1997; Temnykh et al.,
2000, 2001). Researchers involved in QTL
mapping, however, have been using the first
version of the molecular map, consisting
of only 175 RFLP markers. Sharing marker
and phenotype information will make more
comprehensive and conclusive analyses
possible.

For joint or pooled-data analysis, more
powerful QTL mapping procedures need
to be developed, which use all information
available, including marker linkage, pheno-
typic correlation, G × E interaction, multi-
location phenotype, phenotype from multi-
ple populations (the more populations used,
the more alleles will be identified), DNA
profiling of germ-plasm and marker–trait
association established by germ-plasm
fingerprinting. The corresponding software
should be available publicly, with flexibility
for different population structures, genera-
tions and breeding systems.

QTL and Functional Genomics

Recent advances in genome mapping have
made it possible to map and determine the
magnitude of the effect of individual loci
controlling QTs. In a conventional approach
to positional cloning, once very tightly
linked markers are identified, the genetic
map is related to a physical map and seq-
uencing can begin. When the target region
is sequenced, the genes within the region
become candidate genes and are then used
in complementation tests. This approach
has been successfully used to clone QTL

in tomato (Lycopersicon esculentum L.) for
fruit weight (Frary et al., 2000) and sugar
content (Fridman et al., 2000) and in rice for
heading-date/photoperiod sensitivity (Yano
et al., 2000).

The story is the same for all successful
examples currently available for QTL clon-
ing. Three cloned QTL have relatively large
effects, with over 40% variation explained
in near-isogenic backgrounds, which is com-
parable to major genes. Both crops have a
large number of molecular markers avail-
able, so QTL mapping using primary popula-
tions could narrow the target region down to
less than 1 cM. Usually, several thousand
individuals from the secondary populations,
such as those from advanced back-cross or
NILs, are used for fine-mapping. Each crop
has a well-established genetic-transforma-
tion  system.  Several  years  of  hard  work,
along with luck, are needed for the cloning of
a gene.

In complementation tests for the func-
tion of the candidate genomic region of a
QTL, transformation for creating quantita-
tive variation will depend heavily on the
expression and inheritance of the introduced
QTL, because QTs are usually controlled by
a number of genes, each with relatively small
effect, and mimicked by internal genetic
backgrounds and external environmental
factors. Therefore, it would be a great chal-
lenge for molecular geneticists to verify the
effect of minor QTL (Xu, 1997). Although
most studies have identified QTL that
explain more than 10% of phenotypic vari-
ance (Table 9.1), minor QTL can be identi-
fied if larger population sizes are used. On
the other hand, minor QTL can be detected
with greater power by first removing the
effects from detected QTL of larger effects –
for example, by including their genotypes as
cofactors in the regression. In maize, a QTL
contributing as little as 0.3% of phenotypic
variance was reported, from an F2 popula-
tion of 1700 individuals with a probability
threshold of 0.05 (Edwards et al., 1987). For
such a minor QTL, however, it is very diffi-
cult to use the approach discussed above to
do a complementation test.

A typical higher-plant genome encodes
10,000–100,000 genes, scattered through a
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total of 108–1010 bp of DNA. Consequently,
0.1% of the genome would include an aver-
age of ten to 100 genes. Due to environmental
and epistatic influences, current procedures
allow the placement of QTL with only
low resolution (10–30 cM intervals of the
genome) (Kearsey and Farquhar, 1998). Such
large segments probably contain millions of
base pairs of DNA and a multitude of genes,
so it is unclear whether individual effects are
caused by a single gene or a set of linked
genes. Low-resolution mapping also makes
it a daunting task to sort through large seg-
ments of DNA to clone the gene(s) responsi-
ble for the QTL effects. Map-based cloning
must narrow down the candidate genome
region to several to tens of kilobases. The
ultimate resolution of QTL mapping, how-
ever, is limited by the number of meioses.
This number can be increased by using
larger sample sizes or by accumulating
meioses over a number of generations. Fine-
mapping of a QTL to a small chromosomal
region involves the identification of unique
recombinants that differ in genome compo-
sition near the QTL and the phenotypic
evaluation of numerous progeny from these
recombinants to obtain a reliable measure
of the true QTL genotype. High-throughput
analysis, combined with highly informative
molecular markers, such as SSRs and SNPs,
enables us to manage populations with
thousands of plants using thousands of
markers in fine-mapping. With the develop-
ment of chip technology, it is possible
to make massive parallel data acquisition
and analysis, providing the potential for
miniaturization and multiplexing required
for high-throughput analysis. Array-based
genotyping of SNPs will accelerate posi-
tional cloning and the high-throughput
identification of both monogenic and
polygenic traits.

Using a QTL mapping strategy, the
quantitative variation of proteins or protein
quantity separated by two-dimensional
polyacrylamide gel electrophoresis can be
localized. This genetic location can be
called a protein-quantity locus (PQL). The
PQL strategy can also result in the identifica-
tion of candidate proteins. Proteins whose
genetic factors control quantity and/or

activity can be colocalized with QTL defined
for the agronomic trait. In this connection,
de Vienne et al. (1999) showed that three
PQLs controlling the quantity of a single leaf
protein and three QTL for height growth
in maize were colocalized. Because protein
loci sample the genome differently from
most PCR-based techniques, they provide a
different level of information with respect to
the diversity questions being asked. Com-
mon proteins were found when studying
related species belonging to the same family.
If a protein appears to be of interest in a
cultivated species and if the gene coding
an electrophoretically identical protein is
already sequenced in another species, this
may dramatically shorten the time taken to
establish it as a gene of agronomic interest
(Thiellement et al., 2001). One can envisage
the development in the coming years of such
comparative proteomics. The use of protein
analysis in the candidate-gene approach is
still in its infancy and it will be developed
predominantly for the benefit of the plant
breeders.

As nucleotide sequencing of the
Arabidopsis and rice genomes have been
completed, and large amounts of expressed
sequence tag (EST) information have been
obtained for many other plants, there are
many opportunities to use this wealth of
sequence information to accelerate progress
towards a comprehensive understanding of
the genetic mechanisms that control plant
growth and development and responses to
the environment (Somerville and Somer-
ville, 1999). With a complete sequence for
the target organism (or even a closely related
organism that has been aligned with the
target by comparative mapping), genetic
mapping may remain the most convenient to
process in scanning the genome for target
loci. The information provided by genetic
mapping about the approximate location of a
target gene would equate to having a list of
open reading frames within the target region
and putative functions for many of them.
Further inferences about likely candidate
genes might be based on the presence of
tissue-specific promoters or other clues
regarding when and where specific tran-
scripts might be expressed. A large number
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of molecular polymorphisms, such as SNPs
and small insertions/deletions or large inser-
tions, discovered with genome sequencing,
also provides an opportunity for identifying
the nucleotide change associated with
QT variation. The nucleotide change that
contributes to quantitative variation has
been referred to as a QT nucleotide (QTN)
(Lyman et al., 1999). Fine-mapping com-
bined with sequence analysis could narrow
the chromosomal region associated with
quantitative variation (QTL) down to a
specific nucleotide change.

The wealth of information from various
genome-sequencing projects and sequence-
analysis tools provides the biologist with
information for gene prediction. Chief in the
arsenal of gene prediction are coding exon
prediction, BLASTN searches of dbEST and
BLASTX searches of protein databases.
Bioinformatics-based functional genomics
utilizes these sophisticated search tools to
compare sequences of the candidate genes
with the existing gene sequence and look for
homology (similarity) between the candi-
date gene and known genes (for reviews, see
Higgins and Taylor, 2000; Mount, 2001). The
basis of homology searching is that related
genes have similar sequences and so a new
gene can be discovered by virtue of its simi-
larity to an equivalent, already sequenced,
gene from a different organism. Prediction
tools are used to predict the sequence of
proteins that would be produced by the
candidate genes and to compare the pre-
dicted protein sequence with known protein
sequences. When the function of genes in the
databases is known, information can be used
to further qualify a candidate gene. Those
biologists working with less genetically
endowed organisms might be able to lever
the genetic information from model organ-
isms, such as rice, by taking advantage of
homology. In this way, a reverse quantita-
tive-genetics approach could be fruitful in
that one could ask how much phenotypic
variation in a non-model organism is
explained by the homologue of a gene with
a similar phenotype in a model organism
(Mauricio, 2001).

Experimental approaches to functional
genomics include analyses at the levels of

genetics, expression, protein and metabo-
lism. The main roadblock on the journey
from QTL to gene is that tests for quantitative
complementarity can only be done if a stock
containing a mutant allele at the candidate
locus exists. Much of the Drosophila genome
consists of loci with known function but
no mutant allele (Mackay, 2001). Therefore,
the most direct approach could be one that
utilizes knockouts to ‘turn off’ a gene and
analyse the phenotype. The general princi-
ple of this conventional analysis is that the
genes responsible for a phenotype can be
identified by determining which genes are
inactivated in organisms that display a mut-
ant version of the phenotype. If the starting-
point is the gene, rather than the phenotype,
then the equivalent strategy would be to
mutate the gene and identify the phenotypic
change that results. This approach requires
large-scale mutagenesis. As an initiative in
functional genomics, the International Rice
Research Institute (IRRI) has begun the
systematic production of rice mutants with
the goal of creating a collection of 40,000
independent deletion lines, each carrying an
average of ten mutations per genome, result-
ing in a 90% probability of detecting all
possible genes in rice (http://www.cgiar.
org/irri/genomics/index.htm). As of January
2001, about 47,000 M3 or M4 lines were
obtained from ~17,000 independent M1

plants from treatment with diepoxybutane
(DEB) (0.006%), fast neutrons (FN) (33 Gy)
and gamma rays (GR) (250 Gy). Large collec-
tions of insertion mutants are available for
Arabidopsis, maize, petunia and snap-
dragon, and collections of insertion mutants
are being created in several other species.
Three types of insertional-mutant libraries
in rice are being constructed based on
random insertions of a DNA (a T-DNA, an
endogenous transposon or a plasmid con-
taining a transposable element that can be
introduced and result in transposition) into
the genome (for a review, see Wu, 1999).
Both deletion and insertional mutants will
provide IMLs for major genes as well as
QTL. A further advantage of a collection of
single-deletion and insertional mutation in a
co-isogenic background is that they can be
used to determine how interlocus epistatic
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interactions shape the phenotype, by cross-
ing mutated lines in all possible pairwise
combinations and assessing the behaviour in
the doubly heterozygous progeny (Mackay,
2001). Numerous IMLs derived from a single
genetic background will also open the door
to genetic and functional analyses of QTL
with minor effects. In order to assign a func-
tion to an unknown gene, however, examin-
ing the phenotype of the mutant can be much
more difficult than it sounds, especially for
a quantitative phenotype. For some genes,
inactivation may not have any apparent
effect.

With the development of microarrays,
gene-expression profiling is emerging as an
effective way of finding candidate genes. It is
not clear how applicable expression profil-
ing will prove to be to the analyses of QTL,
as there are three potential pitfalls to this
approach (Flint and Mott, 2001). First, QTL
might produce only modest changes (that
is, less than a twofold difference) in gene
expression, which cannot be distinguished
from changes caused by non-genetic factors
using the microarrays currently available.
However, improved quantification of mRNA
levels might overcome this problem. Sec-
ondly, there might be difficulties in identify-
ing the correct tissue and developmental
stage on which to carry out gene-expression
analysis. As discussed previously, however,
QTL mapping across different developmen-
tal stages could provide some clues to this
issue. Thirdly, we are ignorant of the extent
to which quantitative variation is regulated
at the transcriptional level; mRNA differ-
ences might be a secondary consequence of
genetic action.

The methodologies and strategies cur-
rently used are not entirely adequate for
assigning functions to the vast numbers of
unknown genes that could be discovered
by sequencing projects. In the future, gene
functional analysis will be made at different
levels with different methods, which may
include complete sets of mRNA molecules
(transcriptome level), protein molecules
(proteome level) and metabolites (low-
molecular-weight intermediates) (metabo-
lome level) present in a cell, tissue or organ
(Hunt and Livesey, 2000; Pennington and

Dunn, 2001). It can be expected that technol-
ogy development in all these areas will bring
up new tools that are more suitable for the
functional analysis of QTL.

Conclusions

Molecular-marker technology has revolu-
tionized our understanding of quantitative
traits under different backgrounds at differ-
ent levels of genomics. In the 21st century
we are starting with numerous develop-
ments in science and technology to
manipulate genes for both qualitative and
quantitative traits. Now we can use every
possible genetic tool to improve QTs. Using
marker– trait association, for example, MAS
can now help breeders manipulate traits
that are difficult or impossible to handle
in conventional breeding. As human pop-
ulation increases yearly and because food
supply in the world must keep pace,
improvement of plants continues to be a
challenge to geneticists and plant breeders.
As a major food source for human beings
and a model plant for molecular biology,
rice has been moving well ahead of other
plants in QTL analysis. Any success in this
crop will benefit others in certain ways. In
the future, more attention should be paid to
pooled-data analysis, transgenic (gene plus)
and knockout (gene minus) mutant analy-
sis, G × E interaction, epistasis and develop-
mental genetics for complicated traits,
trait complexes and trait components. With
the techniques currently available, it takes
years to clone a gene using map-based
cloning. The lack of significant phenotypic
effect for numerous QTL will greatly
challenge our current systems. Additional
research is urgently needed to map, clone
and better characterize QTL. In particular,
we need to be able to map mutant genes
to a small interval more efficiently and we
need a high-throughput detection system to
identify the molecular lesion in the critical
region more quickly. Therefore, the devel-
opment of an ideal system for QTL analysis
in the era of functional genomics is critical
for all plants. Considering interaction of all
types that could happen among numerous
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genes with minor effects and interaction
with external environments that could
change from time to time and from location
to location, we need to develop much more
efficient systems for separating, pyramiding
and packaging all these genes and to make
them functional at a full scale in specific
environments. It seems that these systems
would be too complicated to be practical.
It is reasonable to believe that this could
be a major objective for many generations of
geneticists and plant breeders. Highly infor-
mative markers, isogenic-mutation libraries,
high-throughput technology and powerful
statistical methods and computational soft-
ware are key tools for the genetic manipula-
tion of minor QTL. With all the technical
developments, manipulating quantitative
traits in the near future could be as easy
as manipulating qualitative traits controlled
by major genes.
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10 Marker-assisted Back-cross Breeding:
a Case-study in Genotype-building Theory

Frédéric Hospital
INRA, Station de Génétique Végétable, Ferme du Moulon,

91190 Gif-sur-Yvette, France

Introduction

I wish here to provide an overview of some
past and more recent results on marker-
assisted back-cross (MAB) breeding theory,
and discuss the general consequences for
marker-assisted selection (MAS) and geno-
type building (GB). MAB breeding is a
well-known procedure for the introgression
of a target gene from a donor line into the
genomic background of a recipient line. The
objective is to reduce the donor genome
content (DGC) of the progenies by repeated
back-crosses (BCs) to the recipient line. GB
means here the use of markers to design
new genotypes combining favourable alleles
previously detected at a (possibly large)
number of loci in (possibly many) different
parental lines. Here, the genomic back-
ground in which those alleles are combined
cannot, in general, be controlled, because
the genes are too numerous. The theory
in this domain remains largely unexplored
and few results are available. For example,
de Koning and Weller (1994) and Dekkers
and van Arendonk (1998) have considered
the optimization of MAS for identified
quantitative trait loci (QTL) plus a possible
‘polygenic’ background controlling the rest
of the genetic variation not explained by
the identified QTL. These analyses are
restricted to one or two identified QTL.
Also, van Berloo and Stam (1998) and

Charmet et al. (1999) have considered a
larger set of identified QTL, each con-
trolled by flanking markers, and studied
selection of recombinant inbred lines or
doubled haploids based on flanking mark-
ers to produce the best hybrid. This analysis
is restricted to selection among inbreds for
one or two generations only. Hospital et al.
(2000) studied selection on marker pairs
flanking 50 QTL identified in an F2 popula-
tion. With a ‘QTL complementation strat-
egy’, selection of three to five individuals
among a total of 200 for ten generations
increases the frequency of favourable alleles
at the 50 QTL up to 100% when markers
are located exactly on the QTL, but only to
92% when marker–QTL distance is 5 cM.
The authors conclude that the efficiency
of marker-based selection is bounded by
the recombinations taking place between
the markers and the QTL. Hence, one has
to accelerate the response to selection to
fix favourable QTL alleles before marker–
QTL linkage disequilibrium vanishes. The
main limitation identified is the fact that
selected individuals are mated at random:
the authors suggest that pairwise matings
should increase the efficiency of selection.
But the theory in this domain remains
unexplored.

MAB is of great practical interest in
applied breeding schemes, either to mani-
pulate ‘classical’ genes between élite lines

©CAB International 2002. Quantitative Genetics, Genomics and Plant Breeding
(ed. M.S. Kang) 135



or from genetic resources or to manipulate
transgenic constructions. From a theoreti-
cal standpoint, it is a ‘simple’ example of
marker-based selection: in general, only
two alleles are segregating, and the gametic
phase is known because only one chromo-
some of each pair is issued from effective
recombination (the chromosome from the
gamete produced by the back-crossed
parent). It is, then, also an appropriate case-
study to investigate how selection and
recombination work together to make it
work better in any type of MAS programme.

In BC breeding, markers can be used
to: (i) control the target gene (foreground
selection) if needed (Melchinger (1990)
discussed the optimal scheme to obtain a
minimum number of individuals carrying
a target gene of known location; Hospital
and Charcosset (1997) discussed the optimal
number and positions of markers to control
a QTL (target gene of uncertain location));
and/or (ii) control the genetic background
(background selection). The objective of
background selection is to accelerate the
return to the recipient genome outside
the target gene, by selection of the recipient
allele at markers located either on the carrier
chromosome (the chromosome carrying the
target gene) and/or on non-carrier chromo-
somes (the other chromosomes). Back-
ground selection has already been shown
to be efficient by previous theoretical work
(e.g. Hillel et al., 1990; Hospital et al., 1992;
Groen and Smith, 1995; Visscher et al., 1996)
and experimental work (e.g. Ragot et al.,
1995). I wish here to focus on recent theoreti-
cal  developments  achieved  by  our  group
on two aspects of background selection: the
reduction of linkage drag around the target
gene and the estimation of recipient genome
content in BC progenies.

In any case, one must keep in mind that
selection on markers in BC programmes is
considered efficient if it permits a return to
the recipient genome outside the target gene
faster than the normal return rate when no
selection on markers is applied (DGC halves
at each generation). Hence, the efficiency of
MAS should always be compared with this
normal rate as a reference.

The Reduction of Linkage Drag in
Marker-assisted Back-cross Programmes

The carrier chromosome deserves special
consideration in BC programmes because,
due to selection for the donor allele at the
target locus in each generation, the rate
of return to the recipient genotype on this
chromosome is slower than on non-carrier
chromosomes. Stam and Zeven (1981) pro-
vided an equation to calculate this rate of
return when no selection on markers is
applied. Based on a numerical comparison
of these results with the known rate
of return on non-carrier chromosomes
(DGC halved each generation), Young and
Tanksley (1989b) pointed out that the donor
genes on the carrier chromosome were the
most difficult to eliminate and could persist
in the progenies long after the DGC on
non-carrier chromosomes has returned to
approximately zero if no selection on mark-
ers was applied. They provided impressive
experimental proof of this statement, based
on the a posteriori genotyping of a
collection of tomato varieties previously
introgressed for a resistance gene.

Size of intact donor chromosome segments
around the target gene

The intact donor segment is in any BC
generation the chromosome segment of
donor origin containing the target locus,
which has remained unaltered by cross-
overs since the original cross between the
donor and recipient parents. Hanson (1959)
first provided the theoretical expression for
the expected length of this intact segment.
This was later revisited by Naveira and
Barbadilla (1992), who also provided the
corresponding variance. It is important to
note that Stam and Zeven (1981) provided
the total proportion of donor alleles on
the carrier chromosome either on the intact
segment or on other non-contiguous blocks
of genes elsewhere on the carrier chromo-
some, which is a different measure of link-
age drag. In fact, comparing numerically the
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proportion of donor alleles on the intact
segment with the total proportion shows
that the vast majority of unwanted donor
alleles are located on the intact donor seg-
ment in advanced BC generations. Hence, I
shall focus here only on the intact segment
as a measure of linkage drag.

Hospital (2001) computed the mean and
variance of the length of the intact donor
segment around the target gene, when back-
ground selection is applied on two markers
flanking the gene, one on each side (i.e. size
of segment among ideotypes: individuals
that are heterozygous at the target locus and
homozygous for the recipient allele at both
flanking markers) in any BC generation. The
numerical results indicate that the expected
length of donor segment on each side of the
target gene is approximately half of the dis-
tance between the gene and the flanking
marker in BC1, but the length at more
advanced BC generations depends on the
marker distance. For distant markers (more
than 30 cM), the expected length of donor
segment decreases in advanced BC gen-
erations, because recombination events
accumulate between the target gene and the
marker during successive meioses. This is
no longer the case for shorter marker dis-
tances: for markers at 20 cM from the target
gene or closer, the expected size of the donor
segment in an advanced BC generation is
approximately the same as the expected size
in BC1. In this case, recombination events
are rare and do not accumulate: in general,
the genotypes selected experienced only one
crossover, the one that permitted the flank-
ing marker to return to recipient genotype.
The basic conclusion is that selecting for
distant markers over several successive BC
generations cannot provide a better reduc-
tion of linkage drag than using close mark-
ers. Using very close markers is the only way
to reduce linkage drag substantially.

Optimal population sizes

The above results refer to the length of
the donor segment in individual genotypes
homozygous for the recipient allele at both

flanking markers (double recombinants) but
say nothing about the probability of obtain-
ing such genotypes. In a classical situation
in plant breeding, where, among a whole
population, a single individual can be
selected and back-crossed to produce the
population at the next generation, such
probability obviously depends on popula-
tion sizes. Obviously, using close markers,
as recommended above, probably implies
screening large populations, which gener-
ates large genotyping costs. It is thus
important to optimize population sizes,
i.e. determine the minimal population sizes
(and genotyping effort) necessary to obtain
the desired genotypes. Although it is
intuitive that, for close-flanking markers,
double recombinant genotypes are highly
unlikely to be obtained in one single genera-
tion (BC1) so that at least two BC genera-
tions should be performed (Young and
Tanksley, 1989b), the underlying mathe-
matics has been worked out only recently.
A solution was first derived by Hospital
and Charcosset (1997). This result was used
by Frisch et al. (1999) with numerical appli-
cations in the context of single-generation
optimization (population size is optimized
to permit the selection of a double recombi-
nant genotype at generation t + 1, given that
the genotype selected at generation t is
known), whereas Hospital (2001) showed
that a better optimization is obtained when
considering all the planned generations
simultaneously. The best optimization
strategy is to: (i) determine the maximal
number of BC generations that could be
performed in a breeding programme; (ii)
optimize simultaneously the population
sizes at each of those previously defined
generations before the programme is started;
and (iii) refine the optimization at each
generation, when the genotype of the
selected individual is known. This requires
some numerical computation. A computer
program (POPMIN) that performs the cor-
responding numerical calculations easily
was designed (F. Hospital and G. Decoux,
2002) and is freely available at http://
moulon.inra.fr/~fred/programs. The results
indicate that optimal population sizes
should not be the same at each BC
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generation (using larger population sizes
in advanced generations than in early
generations reduces the overall number of
individuals genotyped during the breeding
scheme), as pointed out by Hospital and
Charcosset (1997). More generally, the
results indicate that a drastic reduction of
linkage drag can be obtained at a reasonable
cost by performing more than two BC gener-
ations. For example, for flanking markers as
close as 2 cM on each side of the target gene,
the minimum number of individuals that
should be genotyped to obtain a double
recombinant in BC1 is about 24,000. The
same result can be obtained over two gener-
ations (BC2 strategy) by genotyping 290
individuals in BC1 and 500 in BC2. Finally,
over three generations (BC3 strategy), the
optimal population sizes are 120 individu-
als in BC1, 170 in BC2 and 370 in BC3. In all
three strategies, the probability of obtaining
a double recombinant for the flanking mark-
ers by the end of the breeding programme is
above 99%. In the BC3 strategy, the proba-
bility of obtaining a double recombinant
in BC2 is about 75%. If this happens, the
programme is obviously not pursued until
BC3 (unless for other reasons not consid-
ered here). Hence, planning to perform a
maximum of three BC generations (BC3
strategy) permits one in 75% of the cases
to obtain a double recombinant in BC2 by
genotyping a total of only 290 individuals,
which is much less than the 790 individuals
necessary with the BC2 strategy. With the
BC3 strategy, only in 25% of the cases
should the programme be really conducted
until generation BC3. Hence, averaging over
all possibilities, the mean number of indi-
viduals that need to be genotyped to obtain
a double recombinant with the BC3 strategy
is only about 380, compared with an aver-
age of about 760 with the BC2 strategy.
Hence, planning at the beginning of the
programme to perform more than two BC
generations is always a better strategy for
optimizing the costs of genotyping (unless a
rapid success is really mandatory). This is
equivalent to fixing a not-too-low risk of
failure per generation (risk of not obtaining
a double recombinant at that generation), in
particular in early BC generations, which is

the converse of what was advocated by
Frisch et al. (1999). Obviously, the strategy
and number of individuals to be genotyped
should be reconsidered at each generation,
once the genotype of the individual selected
is known. This is also possible using our
computer program POPMIN. In conclusion,
planning to perform three or more BC
generations and/or increasing the risk per
generation has two main advantages. First,
for given and affordable population sizes
(genotyping effort), it permits a more drastic
reduction of linkage drag. This is particu-
larly useful for introgression of genes from
exotic genetic resources, which may contain
undesirable genes surrounding the gene of
interest, for the manipulation of transgenic
constructions (genetically modified organ-
isms (GMOs)) when the introgression of
the construction only is desired and close
markers or better sequences of flanking
regions are available, and/or for the deriva-
tion of near-isogenic lines (NIL) or congenic
lines for the identification and validation
of QTL. Secondly, planning to perform
more than two BC generations increases the
probability of success (obtaining a double
recombinant) in advanced BC generations.
The optimal population sizes above are
defined such that at least one double recom-
binant is obtained with a given risk. It is
then likely that on average more than one is
obtained. Background selection for markers
on non-carrier chromosomes is then possi-
ble among those double recombinants.
This permits a better reduction of DGC on
other chromosomes. Moreover, background
selection on non-carrier chromosomes is
more efficient in advanced BC generations
(Hospital et al., 1992).

Background Selection on Non-carrier
Chromosomes: Estimation of Donor

Genome Content

Computation of multilocus genotype
frequencies in complex pedigrees

This section is not just related to MAB
breeding, though two applications in this
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field are given in the following sections.
However, I want to mention these results
because it can prove useful in various areas
of MAS and GB theory, as well as for QTL
detection.

Computing expected genotype frequen-
cies at several loci (three or more) and/or in
complex breeding schemes (back-crossing,
hybrid mating, random mating, selfing,
full-sib mating or any combination of these)
is sometimes necessary in plant breeding.
Actually, it is more and more frequent when
using marker information, because many
theoretical calculations are based on the
probabilities of the different possible geno-
types at markers (e.g. in QTL detection) or
because one wishes to predict the proba-
bility of obtaining a particular genotype at
markers or loci of interest (see an example
above for the reduction of linkage drag in
BC). However, such calculations are tedious
and barely possible by hand. Hospital et al.
(1996) have proposed a general algorithm
to derive such probabilities automatically
by recursion and have provided the
corresponding Mathematica notebooks
(http://moulon.inra.fr/~fred/programs).
These recursions were implemented in a
general program (MDM), which performs
numerical and more powerful calculations,
by Servin et al. (2002), also available at the
above Web page. The programme MDM has
various applications in plant and animal
genetics. Two examples are provided below.

Precision graphical genotypes

To estimate the genomic composition of
individuals using markers, the most basic
estimate of DGC could be to score the geno-
type at the markers and then estimate DGC
from the ratio of markers heterozygous for
the donor allele over the total number of
marker scores. This is a crude estimate that
has the major drawback of being highly
dependent upon the placement of markers
along the genome. If markers are evenly
spread and not too far apart from each other,
the estimate is not correct (see below) but
could be accepted. However, it is self-
evident that, if markers are not evenly

distributed (the real situation), weighting
them equally is clearly not the best solution.

A first attempt at providing a better
estimate of DGC by taking the marker
locations into account was made by Young
and Tanksley (1989a), who introduced the
concept of graphical genotypes to ‘portray
the parental origin and allelic composition
throughout the genome’. This takes into
account distances between markers in the
sense that a chromosomal segment flanked
by two markers of donor type (DD) is consid-
ered as 100% donor type, a chromosomal
segment flanked by two markers of recipient
type (RR) is considered as 0% donor type,
and a chromosomal segment flanked by one
marker of donor type and one marker of
recipient type (DR) is considered as 50%
donor type.

Using the program MDM, it is possible
to compute, at any point of a segment
flanked by two markers, the probability of
being of donor type, given the genotypes at
the markers and their locations. Averaging
over all possible positions between the two
markers provides an estimate of DGC: preci-
sion graphical genotype (PGG). This shows
that the estimate of Young and Tanksley
(1989a) is not always correct. In DD seg-
ments, DGC is below 100%, due to possible
double crossovers between the markers.
This error is minimal in BC1 and increases
in more advanced BC generations. In RR
segments, DGC is above 0%, due to possible
double recombinations between the mark-
ers. This error is maximal in BC1 and
decreases in more advanced BC generations.
However, the errors on either DD or RR seg-
ments are numerically not very important. In
the DR segment, DGC is exactly 50% in BC1
but decreases to below 50% in advanced
BC generations. Paradoxically, although the
estimate of Young and Tanksley on the DR
segment is correct in BC1, it is for the same
segments that the error is quantitatively the
most important in advanced BC generations.
As the general trend in back-crossing is to
have more and more markers of recipient
type in advanced BC generations, even with
no selection on the markers, it is expected
that many segments are of DR type: hence the
overall error might be important.

Marker-assisted Back-cross Breeding 139



Extending these results using MDM, B.
Servin (unpublished data) has shown that,
when estimating the DGC in a chromosomal
segment flanked by two markers at a given
generation, not only the genotypes of the two
markers at that generation are informative,
but the genotypes of the two markers at
previous generations also matter, and so
do the genotypes of non-flanking markers
(‘second’ markers on the ‘left’ or on the
‘right’ of the segment, ‘third’ markers, and so
on). Taking this additional information into
account permits in some cases a gain in pre-
cision for the estimate of the most probable
genotype at any point in the segment. This is
useful for graphical genotypes and DGC esti-
mates, but also for any purpose where this
type of calculation is necessary, probably the
most important one being QTL detection.
Using simulation, it was shown that the
correlation between the ‘true’ DGC and its
estimate by MDM is very good (B. Servin,
unpublished data). The program MDM can
be included as a subroutine in any program
performing such calculation (e.g. QTL detec-
tion programs) and should permit a gain
in the precision of the corresponding esti-
mates. However, the amount of this gain
remains to be quantified and deserves more
work.

Application to maize data

PGGs derived using MDM were applied
to experimental data regarding marker-
assisted introgression of three favourable
QTL alleles between maize élite lines
(Bouchez et al., submitted). Three QTL
were detected in a recombinant inbred line
population. The favourable quantitative trait
alleles (QTAs) at these three loci originating
from the first parental lines were intro-
gressed into the genomic background of
the second parent through three crosses to
the second parent (i.e. one non-segregating
cross followed by two BCs), followed by one
generation of selfing to fix the QTA in a
homozygous state. This experiment shows
that marker-assisted back-crossing can be

used to manipulate QTAs between élite
lines, although the validation of QTL effects
in introgressed progenies appears easier for
simple traits (e.g. earliness) than for more
complex traits (e.g. yield), most probably
because of stronger genotype–environment
interactions. In any case, the experiment is
among the few public experimental demon-
strations of the efficiency of marker-based
selection in BC programmes. In addition,
the complex pedigree corresponding to this
experiment was a challenging opportunity
to apply the method of PGGs, using MDM to
estimate the genome content of the prod-
ucts. The results show that, with only about
200 individuals genotyped per generation
and a total of 15 markers on non-carrier
chromosomes, the return to the recipient
parent is close to 100% after two BC
and one selfing generations. Chromosomal
segments containing the three QTL were
efficiently controlled by three markers per
segment. However, the small population
sizes did not permit a drastic reduction
of linkage drag, which was not especially
desired here because of the uncertainty
about QTL locations. Comparing PGGs with
the approximation of Young and Tanksley
(1989b) described above indicates that the
difference in the estimates can be important
– up to ±8% genome content in some cases.
The sign of the difference may vary from
one chromosome to another, indicating
that the error is probably more important
qualitatively than quantitatively. The error
is particularly important for chromosomal
segments flanked by markers of different
genotypes and in advanced BC generations,
as expected. In particular, MDM can predict
possible residual heterozygosity in the final
material, where the other approximation
obviously cannot.

One possibility is to use PGGs to
provide a better estimate of genome content
for a set of known markers. Conversely, since
the estimate provided is more accurate,
this should help reduce the number of
markers genotyped and hence reduce the
experimental costs. This remains under
development.
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. . . no one believes an hypothesis except
its originator but everyone believes an
experiment except the experimenter.

(W.I.B. Beveridge, 1950)

Modelling: a Historical Perspective

Modelling has a long history in genetics.
Arguably, it is as old as the concept of
proposing testable hypotheses about the
behaviour of genotype–environment systems.
Therefore, it can be thought of as extending
back to and before the founding works of
Darwin, Wallace and Mendel. Perhaps we
can think of the 21st century as our third
century in this scientific enterprise. It is
worth noting that successful application of
plant breeding has a much longer history
than its modern implementation based on
our scientific understanding of genetics.
The objective of this chapter is to speculate
about some of the directions that will
be taken in the application of modelling
methods in quantitative genetics and plant
breeding in the 21st century.

The modelling process in genetics has
taken various forms throughout its history.

From the perspective of the discipline of
quantitative genetics today, the 19th century
was dominated by a growing qualitative
appreciation of the implications of inheri-
tance. This appreciation was gleaned and
moulded from a dispersed mixture of
observational studies of animal and plant
diversity and, by today’s standards, a limited
body of experimental work. Also the formal
methods of statistical analysis that we are
familiar with today were in their infancy
in the second half of 19th century. In the
20th century, the emergence of quantitative
genetics as a discipline within genetics is
more clearly observed. The neo-Darwinian
synthesis of the evolutionary process grew
out of the work of key individuals in the
first half of the century. The most obvious
contributions came from the work by Fisher,
Wright and Haldane. Much has been made of
and written about the debate between Fisher
and Wright on the relationships between
and different emphases in their models of
the evolutionary process. However, much
less attention has been given to the dominant
influence of Fisher’s views over those of
Wright in the development of the modern
theory and practice of plant and animal
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breeding. As we learn more about the detail
of the genetic architecture of quantitative
traits, it is interesting to contemplate
whether this dominance will continue or
whether some form of resolution of the two
models will emerge.

From the perspective of plant-breeding
research, the last quarter of the 20th century
was dominated by the possibilities and
promises of the molecular biology revolu-
tion, particularly the use of transgenics,
molecular-marker methodologies and, more
recently, structural and functional genomics.
Thus, as we move into the 21st century, the
practice of plant breeding is shifting from
a foundation that was previously based
largely on inferring genetics by measure-
ment of phenotype and selection among
individuals and families based on their
phenotypes to one that is based on direct
measurement and manipulation of the
genetic code in association with field-based
evaluation of phenotypes (Koornneef and
Stam, 2001) and a growing preoccupation
with the biology of the gene–phenotype
relationships that underpin the traits that are
the targets for improvement within breeding
programmes. The 2010 proposal for investi-
gating the functional genomics of the model
plant Arabidopsis demonstrates the high
level of optimism among plant geneticists
that a comprehensive understanding of
gene–phenotype relationships is feasible
(Somerville and Dangl, 2000). This changing
paradigm in plant genetics and plant breed-
ing has many implications for the modelling
processes that will be used in quantitative
genetics.

An interesting trend that has been stim-
ulated by the improvements in our potential
ability to investigate gene–phenotype rela-
tionships for traits is that of questioning
many of the common assumptions that were
made in the formulation of the classical
quantitative-genetic theory for polygenic
traits. It is widely recognized that many of
these assumptions were made to enable trac-
table treatments of the quantitative-genetic
models. It is also widely understood by those
involved in developing these models that
they are approximations of the genetic
architecture of quantitative traits. The need,

feasibility and mechanisms used to relax
these assumptions, in order to make the
quantitative-genetic models more flexible
for a wider range of specific conditions, is
often a topic of debate. One thing is clear,
algebraic derivation of genetic models is
difficult when the simplifying assumptions
about model components are relaxed, e.g.
number and distribution of effects of loci,
epistasis, gene–environment interactions,
linkage and epigenetic effects. The complex-
ity of these extended models generally
limits their accessibility as tools for the
wider plant-breeding audience. Kempt-
horne (1988) discussed this trend and its
implications for model development in
quantitative genetics. He concluded that the
classical approach of developing tractable
algebraic models would have limited appli-
cability as we uncover and want to include
more of the detail of the genetic architecture
of the traits in our models. He also made a
case for the use of high-speed computing as a
practical approach for the analysis of more
complex genetic models.

With the availability of appropriate
hardware and software computing environ-
ments, computer simulation has been
increasingly used as a methodology for
modelling in quantitative genetics. Fraser
and Burnell (1970) gave a synthesis of much
of the early work. A search of the last 30
years of literature that is stored in the CAB,
BA and AGRICOLA electronic referencing
databases suggests an increasing trend in the
use of simulation methodology in the plant
sciences (Fig. 11.1). While it is difficult to
interpret trends over time in these databases,
since they are a recent innovation and many
of the older articles were not published in a
way that takes advantage of these archive
and search facilities, it is clear that simula-
tion methodology is now being widely
used in plant genetics and plant-breeding
research. Many of the software implementa-
tions used for these applications of simula-
tion methodology are problem-specific. This
makes it difficult to modify the software
for other questions or problems. We have
developed hardware (QCC: QU-GENE
Computing Cluster) and software (QU-GENE:
Quantitative Genetics) simulation tools that
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can be applied to a wide range of issues
involved in computer modelling of plant-
breeding programmes (Podlich and Cooper,
1998; Cooper et al., 1999; Micallef et al.,
2001). In this chapter, we shall give an over-
view of aspects of this work and discuss
some applications and research directions.

Quantitative Traits: Simple to Complex

The detail of the genetic architecture of
traits contributes to the degree of complex-
ity that is associated with understanding
their inheritance and manipulating them in
a breeding programme. Many of the impor-
tant traits that are targeted for manipulation
in breeding programmes are quantitative
in nature. From a quantitative genetic and
plant breeding perspective, the properties
of a trait that should be considered in
describing its genetic architecture include:

• The number of genes and the distribu-
tion of the size of their effects on trait
phenotypes.

• The number of alleles for each gene,
the distribution of their effects and
their frequency within a reference
population.

• The linkage arrangements among the
genes and the distribution of allele hap-
lotypes within a reference population.

• The extent and form of epistatic inter-
actions among the genes.

• The extent and form of gene–environ-
ment interactions.

• The extent and form of any pleiotropic
effects of the genes.

Many of these properties of trait architec-
ture are not static within a population or,
indeed, within a single plant or crop stand
over the duration of a growing season.
Therefore, it is necessary to consider their
potential to change as plant populations are
modified over time in the breeding pro-
gramme. One property that has the potential
to become important when considering pop-
ulation structure over cycles of intermating
is the physical distribution of recombina-
tion hot spots and cold spots across the
genome and the effects of these on the dis-
tribution of allele haplotypes and patterns
of linkage disequilibrium within the refer-
ence populations of a breeding programme.

The availability of molecular-marker
technologies and their use to construct high-
density genetic maps for model species
and the important agricultural plant species
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Fig. 11.1. Number of articles published in the last 30 years with the word simulation and either genetic*

(* represents all extensions of the word genetic), breeding, plant or plant breeding as a word anywhere in
the CAB (1984–2000), BA (1985–2000) and AGRICOLA (1970–2000) databases.



have increased our capacity to investigate a
number of these properties of trait architec-
ture. Analysis of the phenotypic variation
for traits by use of molecular-marker maps
in appropriate segregating populations has
enabled the resolution of the continuous
trait distribution into components associ-
ated with regions of the genome, usually
referred to as quantitative trait loci (QTL),
for a number of traits (e.g. Paterson, 1998).
Over the last two decades of the 20th
century, QTL mapping became common-
place for many breeding programmes. This
work has taught us a lot about the statistical
power of this methodology (Beavis, 1998)
and given us some clues about the genetic
architecture of some quantitative traits
(Kearsey and Farquhar, 1998). In most cases,
it has been relatively easy to identify large
regions of the genetic map (10–30 cM) that
are associated with phenotypic variation in
specific experiments. A few studies have
dissected these large genomic regions
into smaller regions, using fine-mapping
methods (1–5 cM). Less commonly, targeted
QTL regions that have been fine-mapped
have been sequenced and a specific gene
responsible for the phenotypic variation has
been identified and studied (Lukens and
Doebley, 1999; Frary et al., 2000).

Together, advances in DNA-sequencing
capability and the development of tech-
nologies for quantifying gene-expression
patterns have catalysed a new range of
methods for studying the structural and
functional properties of genomes. The com-
plete DNA sequences of several prokaryotic
and eukaryotic organisms are now available.
Thus, physical maps of the distribution of
genes throughout plant genomes are now
available for some species. For a number
of species, work is under way to align the
physical and genetic maps and to investigate
genetic diversity at the sequence level for
key regions of genomes. Already, this work
has extended our thinking about the genetic
architecture of many of the traits we have
previously studied only at the phenotypic
level. Consideration is now being given to
the way in which genes operate in networks
to influence growth and development,
response to environmental signals and the

implications of these gene networks for
the phenomena of epistasis, pleiotropy and
gene–environment interactions. Thus, to our
list of the properties that need to be consid-
ered in studying the genetic architecture of
quantitative traits, we could add:

• Description of the gene networks that
underlie traits.

• Definition of the patterns of inter-
connections among the genes within
gene networks.

• Extracellular signal-detection mecha-
nisms and intracellular signal-
transduction pathways.

• The importance and influence of cis-
and trans-acting factors in the regula-
tion of gene expression.

• The sensitivity and robustness of these
gene networks to perturbations.

• The relationships between the gene
networks and the biochemical and
physiological processes associated with
trait expression at the phenotypic level.

If anything, the developments in molec-
ular genetics and molecular biology have
motivated the need for parallel development
of modelling capabilities that enable in silico
evaluation of plant-breeding methodologies
for a range of genetic architectures that go
beyond many of the assumed models used in
classical quantitative genetics.

To understand and quantify the capac-
ity of any breeding strategy to improve the
phenotype of a trait, it is necessary to com-
bine consideration of the genetic architec-
ture of the traits with the heritability of
the trait in the reference population of
the breeding programme. It is daunting
to contemplate the complete description of
the genetic architecture of a trait for the
purposes of directing its genetic improve-
ment in a breeding programme. However,
to enable the design of efficient breeding
strategies to achieve short-term genetic gain,
it is not necessary to consider variation for
all of the genes involved in determining the
gene–phenotype relationship. For a given
reference population, at a given point in
time, it can be argued that it is only the segre-
gating genes that need to be considered in
evaluating the relative merits of alternative
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breeding strategies. In contrast, this issue is
less clear and the argument of focusing only
on the extant allelic variation at segregating
loci becomes less compelling when we con-
sider long-term genetic improvement and
management of genetic resources.

The above list of considerations, while
not intended to be exhaustive, is at least
indicative of the magnitude of the task that is
involved in establishing a flexible platform
for modelling breeding programmes. As a
first step in outlining one approach that we
have adopted, it is useful to qualitatively sort
traits into categories that are based on the
factors that contribute to the complexity of
their genetic architecture and the heritabil-
ity of the trait (Table 11.1). Here we have
emphasized gene number and the distribu-
tion of the size of gene effects, epistasis,
gene–environment interactions, linkage and
the influence of experimental error on herit-
ability. It is recognized that the concepts of
complexity and heritability are continuous
and both can be investigated accordingly.
Therefore, any preliminary complexity–
heritability categorization, such as that in
Table 11.1, is somewhat arbitrary and only
serves as a first approximation in analysis.
However, we have found that this form of
categorization is often a useful first step in
any investigation.

An objective we have pursued, using the
categorization described in Table 11.1, is the
analysis of the power of a range of breeding

strategies to achieve a response to selection
across cycles of a breeding programme for a
large number of genetic models representing
each of the four broad complexity–
heritability categories. To achieve this
requires quantification of the properties of
the genetic model for each of the four cate-
gories described in Table 11.1. For the two
categories identified as low-complexity, this
is relatively straightforward, and much has
already been learnt from the classical quanti-
tative-genetic approaches (e.g. Falconer and
Mackay, 1996; Kearsey and Pooni, 1996;
Lynch and Walsh, 1998). However, for the
two complex categories, this required con-
sideration of how we could incorporate the
effects of epistasis and gene–environment
interactions into the models. While there is
some capacity to consider these properties
within the classical linear modelling
framework used in quantitative genetics, we
sought greater flexibility to consider a wider
range of epistatic and gene–environment
interaction models. The objective here was
to enable us to accommodate some of the
non-linear effects expected of gene net-
works. Some properties of this modelling
framework are discussed below.

The E(N:K) model as a framework

In this section, we give an overview of
a process that can be used for setting up
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Genetic architecture complexity

Heritability Low High

Low

High

High experimental error
Few genes with major effects
No epistasis
No gene–environment interactions
No linkage
Low experimental error
Few genes with major effects
No epistasis
No gene–environment interactions
No linkage

High experimental error
Many genes: major and minor effects
Epistasis
Gene–environment interactions
Linkage
Low experimental error
Many genes: major and minor effects
Epistasis
Gene–environment interactions
Linkage

Table 11.1. Trait characterization into qualitative categories based on the influences of experimental
error on heritability and the number of genes, distribution of gene effects, epistasis, gene–environment
interactions and linkage on the complexity of the genetic architecture of the trait.



simulation investigations to evaluate breed-
ing strategies. The E(N:K) model provides a
quantitative framework that allows the con-
struction of relationships between genetic-
network models, the quantitative effects
of the genes in these networks and gene–
phenotype relationships. Kauffman (1993)
discussed the foundations of the NK model
of gene networks. Within his model, N is
the number of genes in the network and K
measures the number of genes that have an
epistatic influence on the effect of another
gene. Thus, genetic background effects,
which make the effects of the alleles of the
N genes context-specific, can be introduced
by the K parameter. To take into consider-
ation the potential for gene–environment
interactions, we extended the NK model
to allow the effects of the genes in these
networks and the form of these networks to
change among environments (Podlich and
Cooper, 1998). Thus, different NK models
can be completely or partially nested within
environment types. Here environment types
are defined as sets of environmental condi-
tions that contribute to gene–environment
interactions. Thus, in the E(N:K) model, E is
the number of environment types that con-
tribute to gene–environment interactions
within a ‘target population of environments’
(TPE).

For example, if we consider a simple
network based on three genes, where each
gene is influenced by one of the other genes,
for the NK model, N = 3 and K = 1 (Fig.
11.2a). If the effects of the genes in the
network change between two environment
types, then E = 2. Thus, this example would
be defined as an E(N:K) = 2(3 : 1) model. The
colon is used here simply as a mechanism to
separate the N and K values when numbers
replace the letters. To emphasize the rela-
tionship between K and some of the classical
quantitative-genetic models used to describe
types of epistasis, consider any pair of genes
in this network (e.g. genes A and B). The
form of their epistatic interaction can be
considered to be analogous to what would be
classically referred to as digenic epistasis,
i.e. there are two genes and one gene (K = 1)
has an epistatic influence on the other.
Similarly, for networks of larger numbers of

genes, if K = 2, this would be analogous to
trigenic epistasis. Also it is possible to relate
different families of E(N:K) models to some
of the classical models of quantitative genet-
ics. For example, the family of all possible
1(N:0) models would represent the additive
genetic models where there is no epistasis
or genotype–environment interaction. With
N = 1, this would be the classical Mendelian
locus model. Where N > 1 and K = 0, we can
consider a wide range of additive finite locus
models. As we allow N to increase, we
can consider the case where N is very large
(N → ∞), approaching a practical approxi-
mation of the infinitesimal model. To intro-
duce gene–environment interactions, we let
E > 1 and similarly, to introduce epistasis,
we let K > 0. The example described in Fig.
11.2 is only one of many possible ways of
defining gene networks. Figure 11.3 shows
some forms of gene network, for N = 6, that
we have considered: (a) interconnected net-
work, (b) disconnected networks, (c) cascade
network, and (d) mixtures of interconnected
and disconnected networks. The engine of
the QU-GENE simulation software platform
(Podlich and Cooper, 1998; Fig. 11.4) pro-
vides a number of ways for specifying and
visualizing the properties of different E(N:K)
models.

As Kauffman (1993) discussed for evo-
lutionary scenarios, we currently have little
understanding of the detail of most of the
gene networks that underlie fitness traits.
This is equally true for most of the traits
targeted in breeding programmes. However,
uncovering this type of detailed information
is a research objective of many groups. In the
absence of an accurate representation of the
genetic architecture of our target traits, it is
possible to simulate the properties of many
possible E(N:K) models of putative architec-
tures by drawing the effects of the genes from
some underlying frequency distribution of
effects. Kauffman (1993) considered a num-
ber of types of distribution in his analysis of
haploid NK models. He found that many of
the properties of the NK model were insensi-
tive to the type of distribution from which
the effects were drawn. We are currently
examining a range of types of distributions
for diploid E(N:K) models (uniform, normal,
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Fig. 11.2. An example of the process of defining genotypic values for an E(N:K) = 2(3:1) gene network
model: (a) network diagram of the epistatic relationships among the three genes; (b) the effects for the nine
genotypic combinations for each of the three digenic epistatic sets (A = B → A; B = C → B; and C = A → C)
in the two environment-types (E1 and E2) drawn from the uniform distribution; (c) the 27 genotype values
for the combinations of three genes in environment type 1 (W1), environment type 2 (W2) and the target
population of environments (TPE) (WT); (d) a Boolean hypercube displaying the 27 genotypes in three-
dimensional one-mutant neighbour genetic space; WT genotype values are located beside each genotype,
arrows indicate directions of increasing WT values between one-mutant neighbours, circles indicate
adaptive peaks where all one-mutant neighbours have lower WT values and the solid circle identifies
the global peak for the network and the dashed circle a local peak.



exponential). Here we consider some exam-
ples where the parameters for the E(N:K)
model are drawn from the uniform distribu-
tion, i.e. making few assumptions about the
effects of the genes. Clearly, as we learn more
about the genetic architecture of traits, the
random effects that are used in the examples
considered here can be replaced by specific
gene information from a number of informa-
tion sources. Sources of information would
include results from applying a number
of forward and reverse genetic approaches
to experimental populations, e.g: (i) experi-
mental estimates of QTL effects from

whole-genome and fine-mapping studies;
(ii) experimental estimates of genetic param-
eters for major genes that behave as Mende-
lian loci; (iii) estimates of the effects of genes
from targeted mutation and gene-expression
studies; and (iv) experiments conducted to
evaluate the effects of candidate genes. It is
expected that an important source of basic
data on plant gene–environment systems
will come from work on the model species
Arabidopsis (Somerville and Dangl, 2000).

For the example network shown in Fig.
11.2a, we consider the case where there are
two environment types (E = 2), and deter-
mine the genotypic values for the 27 possible
genotypes comprising the three digenic sets,
B → A, C → B, and A → C, indicated by the
arrows connecting the genes (Fig. 11.2a). For
each digenic set, there are nine genotypic
combinations (Fig. 11.2b). For each of the
nine combinations and within each of the
three genotypic sets, a value is drawn at ran-
dom from the uniform distribution for envi-
ronment type 1 (E1) and independently for
environment type 2 (E2). For any given geno-
type, the appropriate gene effects are com-
bined to give the value of the genotype in an
environment type. There are several ways of
combining these gene effects. Here we use
the approach adopted by Kauffman (1993)
and compute the value of a genotype in envi-
ronment j (Wj) as the mean of the effects for
the digenic combinations that contribute to
the genotype (Fig. 11.2c), e.g. for genotype
aabbcc in E1 combine digenic sets aabb,
bbcc and aacc from E1 in Fig. 11.2b. To
estimate the genotypic value for the target
population of environments (WT), we com-
pute the weighted mean of the genotypic
values from each environment type, where
the weights are the frequencies of occur-
rence of the environment types in the target
population of environments (Fig. 11.2c). For
the example in Fig. 11.2, both environment
types are assumed to occur with equal
frequency, i.e. they are both likely to be
encountered 50% of the time in the TPE.

Many options exist to graphically
represent the genetic space for these gene-
network models. For the simple three-
gene case in Fig. 11.2, the genotypes can be
arranged into a three dimensional Boolean
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Fig. 11.3. Examples of four network diagrams
emphasizing different types of network relationships
for networks based on six genes: (a) interconnected
network; (b) disconnected networks; (c) cascade
network; and (d) a mixture of the interconnected
and disconnected network types.



hypercube, where the genotypes are located
on the axes of the cube beside their one-
mutant neighbours (Fig. 11.2d). Additional
information can be added to the hypercube.
For example, the genotypic values in the
individual environment types or the TPE
can be added. It is then possible to identify
directions of increasing genotypic value
between the one-mutant neighbours and
arrows can be added to the axes to high-
light these directions. Trajectories across the
genetic space, as represented by the cube,
can be highlighted by following paths of
increasing genotypic value between one-
mutant neighbours on the cube. A property
of the genetic space that is interesting to
observe is the number and the distribution of
end-points of these one-mutant neighbour
walks across genetic space. These end-
points can be thought of as representing
performance or adaptive peaks in the genetic
space. Further, the regions of the genetic
space that lead to these adaptive peaks can
be thought of as basins of attraction. In the
example (Fig. 11.2d), there are two adaptive

peaks for the TPE. Within this framework,
distinctions can be drawn between local and
global adaptive peaks in the genetic space
and the extent to which there is co-location
of these peaks. For our example, the global
peak is genotype AaBBCC (WT = 0.640) and
there is one local adaptive peak, genotype
aaBbcc (WT = 0.590).

A number of statistics can be used to
describe the structure of the E(N:K) model
genetic space using the derived genotypic
values (Wj and WT). One statistic that we
have found useful is the correlation of the
genotypic values of one-mutant neighbours
in the genetic space. Consider three E(N:K)
= 2(3:K) models, where K = 0 (Fig. 11.5a),
K = 1 (Fig. 11.5c) and K = 2 (Fig. 11.5e). In all
three cases the gene effects were drawn from
the uniform distribution following the pro-
cedure described in Fig. 11.2. For K = 0 (no
epistasis; Fig. 11.5a), we have an additive
model with one adaptive peak, in this case
aabbcc (WT = 0.569). In all cases where K = 0,
there will be one adaptive peak in the TPE.
There will also be only one adaptive peak for
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Fig. 11.4. Schematic outline of the structure of the QU-GENE simulation software platform. The central
ellipse represents the engine (QUGENE) where the properties of the E(N:K) models are specified and the
surrounding boxes represent the application modules used to model breeding programmes. (Adapted from
Podlich and Cooper, 1998.)
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Fig. 11.5. Example of the effect of changing K for a three-gene model on the one-mutant genotype value
(WT) relationships depicted on the Boolean hypercube, number of adaptive peaks and one-mutant correla-
tion coefficients: (a) Boolean hypercube for E(N:K) = 2(3:0); (b) scatter diagram of the WT genotype values
for all 27 genotypes and each of their one-mutant neighbours for E(N:K) = 2(3:0); (c) Boolean hypercube
for E(N:K) = 2(3:1); (d) scatter diagram of the WT genotype values for all 27 genotypes and each of their
one-mutant neighbours for E(N:K) = 2(3:1); (e) Boolean hypercube for E(N:K) = 2(3:2); (f) scatter diagram of
the WT genotype values for all 27 genotypes and each of their one-mutant neighbours for E(N:K) = 2(3:2).



each environment type, but the genotype
that possesses the peak can differ among
environment types when the effects are drawn
independently for each environment. The
correlation of the one-mutant neighbours for
K = 0, in this example, was r = 0.73** (Fig.
11.5b). For both K = 1 (Fig. 11.5c) and K = 2
(Fig. 11.5e), there was more than one adap-
tive peak for the TPE. Generally, it is found
that, as K increases, the number of local
peaks in the genetic space increases. This
increase in ruggedness of the genetic space
results in a reduction in the correlation of the
one-mutant neighbours. In this example, for
K = 1, the one-mutant correlation r = 0.38*

(Fig. 11.5d) and, for K = 2, the one-mutant
correlation r = 0.20* (Fig. 11.5f).

This quantitative framework can be
extended for larger values of E, N and K and
many alternative samples of gene effects can
be drawn from the selected underlying dis-
tributions. While it is feasible to graphically
represent two-gene and three-gene networks
in the manner of Fig. 11.2, obviously it is
more difficult to visualize networks based
on larger numbers of genes. However, auto-
correlation functions can be applied to quan-
tify the ruggedness of larger neighbourhood

regions in the genetic space that is defined
by these larger E(N:K) models. Figure 11.6 is
a schematic representation of the general
trends that we observe across levels of N as
both E and K are increased. When E = 1 and
K = 0, there is only a single adaptive peak.
When K > 0, the ruggedness of the genetic
space increases and when K = N − 1, the
landscape is random and therefore uncorre-
lated. When E > 1, there are shifts in the
adaptive peak between the environment
types. When E > 1 and K > 0, there is the
potential for multiple peak shifts among
the environment types. Thus, by changing
the levels of E, N and K, we can use the
E(N:K) framework to examine a range of trait
architectures that range from simple to com-
plex. The important point here is not the
detail of any one genetic architecture or set
of genetic effects specified in the models, but
rather the flexibility that the framework gives
for considering many families of genetic
models and many parameterizations. This
enables investigation of the properties of
many putative genetic models within the
QU-GENE simulation platform.

We refer to the response surface for the
genetic space as defined by the E(N:K) model
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Fig. 11.6. Schematic representation of the structure of adaptation landscapes for E(N:K) models as epistasis
is introduced by increasing K from K = 0 (additive) to K = N − 1 (uncorrelated) and genotype–environment
interactions are introduced by increasing E from E = 1 to E > 1.



as an adaptation landscape. Clearly, these
concepts are derived from and related to
the fitness landscape concepts defined and
popularized by Wright (1932). The shape or
ruggedness of the adaptation landscape is
one way of quantifying and visualizing the
complexity of the gene–phenotype relation-
ship for a given genetic architecture. This
quantification of the properties of the
genetic space enables consideration of both
global and local landscape features and their
potential for impact on the effectiveness
of the plant-breeding process. This has sig-
nificant advantages when we want to distin-
guish between modelling quantitative traits
in general (global landscape features) and
modelling the specific situation that is faced
by a particular breeding programme (local
landscape features). The recent advances
in the range of molecular tools for charac-
terizing the structural and functional prop-
erties of the genome, constructing genetic

and physical maps and studying gene-
expression patterns provide a sound basis
for modelling the genetic architecture of
traits at the genomic level and modelling the
gene–phenotype relationships for the traits.

In addition to the statistics described
above, the properties of the adaptation
landscapes that are associated with different
E(N:K) models can be analysed in terms
of the more familiar quantitative genetic
concepts of additive and non-additive gene
effects and genetic variance. Computing the
additive effects of genes for a range of E(N:K)
models, where N = 12 and the structure of
the networks is disconnected (Fig. 11.3b),
we observe as an emergent property that the
typical distribution of effects shows a few
genes with large effects and a greater number
of genes with smaller effects (Fig. 11.7).
These distributions of gene effects have
features in common with those of experi-
mentally determined QTL effects (Kearsey
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Fig. 11.7. Frequency distribution for the additive effects of genes (Gene value) for (a) an additive model,
E(N:K) = 1(12:0); (b) a model with epistasis but no genotype–environment interactions, E(N:K) = 1(12:2);
(c) a model with genotype–environment interactions but no epistasis, E(N:K) = 5(12:0); and (d) a model with
epistasis and genotype–environment interactions, E(N:K) = 5(12:2). Distributions based on the simulated
effects for 12,000 genes.



and Farquhar, 1998). In this example, based
on 12,000 simulated genes within E(N:K)
networks, the exact shape of the distribution
of additive gene effects depended on the val-
ues of E and K. Similarly, the distributions
of genotype values tend to be symmetrical
and the exact form of the distribution also
depends on the values of E and K (Fig. 11.8).
Partitioning the total genotypic variation
into additive and non-additive components
of variance and their interaction with envi-
ronments indicates increasing complexity,
and therefore degree of difficulty for genetic
improvement, as both E and K increase (Fig.
11.9). Therefore, using the E(N:K) frame-
work, families of models can be defined
to generate genetic scenarios ranging from
simple to highly complex. This serves as a
basis for using simulation to investigate the
relative merits and efficiencies of breeding
strategies.

Modelling Breeding Programmes
as Search Strategies Exploring

Genetic Space

While we are working to advance our
capacity to investigate and understand the
genetic architecture of traits, we have, at
best, a limited understanding of the power
of plant-breeding strategies to bring about
the desired genetic changes for traits with
complex genetic architectures. Computer
simulation can be used to gain an under-
standing of the relationship between the
efficiency of a breeding strategy and the
genetic architecture of traits. Plant-breeding
strategies can be evaluated in combination
with the E(N:K) framework for their effi-
ciency as search strategies on the adaptation
landscapes associated with the different
genetic models. With high-speed comput-
ing, it is possible to rapidly evaluate many
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Fig. 11.8. Frequency distribution of genotypic values for: (a) an additive model, E(N:K) = 1(12:0);
(b) a model with epistasis but no genotype–environment interactions, E(N:K) = 1(12:2); (c) a model with
genotype–environment interactions but no epistasis, E(N:K) = 5(12:0); and (d) a model with epistasis and
genotype–environment interactions, E(N:K) = 5(12:2). Distribution for each E(N:K) model is based on the
1000 sets of gene effects drawn from the uniform distribution.



breeding strategies across many models of
trait architecture (Micallef et al., 2001).

Many crop-breeding programmes can
be thought of as open or closed recurrent-
selection programmes (Fig. 11.10). Schem-
atically, the breeding programmes involve
working with samples of the possible geno-
types, evaluating their phenotypic and/or
genotypic performance across a sample of
environments (ideally, the sample being
taken to represent the TPE) (Comstock, 1977;
Podlich et al., 1998; Chapman et al., 2000),
selecting the superior genotypes based
on the available genetic and phenotypic
information collected from multienviron-
ment trials and trait-screening experiments,
releasing improved genotypes where appro-
priate and using some of the improved geno-
types to initiate a new cycle of the breeding
programme.

As part of a larger simulation study,
a QU-GENE application module (Fig. 11.3;
Podlich and Cooper, 1998) was developed

to compare mass selection and S1 family
selection (Hallauer and Miranda Fo, 1988;
Comstock, 1996). Mass selection is based on
individual phenotypic performance in a
single environment. S1 family selection is
based on selection on the performance of
replicated S1 progeny families derived from
individual S0 plants. The evaluation of S1

families enabled replication within and
across environments, whereas for mass
selection there was no replication. For the
purposes of this study, it was assumed that
both mass and S1 selection operated as closed
recurrent-selection programmes, with the
mass selection completing a cycle of selec-
tion in 1 year and the S1 selection complet-
ing a cycle in 3 years. Progress from selection
over time was monitored in the simulation
experiment for the numbers of cycles of
recurrent selection equivalent to a period of
30 years. Thus, 30 cycles of mass selection
were completed and 10 cycles of S1 selection
were completed. The two breeding strategies
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Fig. 11.9. Estimates of additive, non-additive, additive–environment interaction and non-additive–
environment interaction components of variance for: (a) an additive model, E(N:K) = 1(12:0); (b) a model
with genotype–environment interactions but no epistasis, E(N:K) = 5(12:0); (c) a model with epistasis but
no genotype–environment interactions, E(N:K) = 1(12:2); and (d) a model with epistasis and genotype–
environment interactions, E(N:K) = 5(12:2). Estimates for each E(N:K) model are based on the 1000 sets
of gene effects drawn from the uniform distribution.



were examined for their capacity to achieve
a response to selection for a range of E(N:K)
models. A selection intensity of 10% was
applied for both mass (50 individuals
selected from 500) and S1 selection (50
S1 families selected from 500 S1 families
evaluated).

The E(N:K) models were constructed by
changing E (1, 2, 5, 10), N (12, 24, 36) and K
(0, 1, 2, 3) and evaluating all possible combi-
nations of these levels of the model factors.
For each E(N:K) model combination, 500 sets
of gene effects were examined by drawing
samples from the uniform distribution and,
for each of the 500 parameterizations of each
E(N:K) model, ten different starting popula-
tions were considered. Each of these model
scenarios was examined for three levels of
single-plant broad-sense heritability (H =
0.05, 0.50, 1.0). Thus, for the results reported
here, the mass and S1 selection strategies
were compared across a total of 720,000
genetic model scenarios. To summarize the
results, each E(N:K) model–heritability com-
bination was allocated to one of the four
complexity–heritability model categories
defined in Table 11.1. The simple-model

low-heritability combination was consid-
ered to be those cases where E = 1, N = 12,
K = 0 and H = 0.05. The simple-model high-
heritability combination included those
cases where E = 1, N = 12, K = 0 and H =
0.50 and 1.0. There was only a small effect
of increasing H from 0.50 to 1.0; therefore,
these results were combined. The complex-
model low-heritability combination included
all cases where E > 1, N > 12, K > 0 and H =
0.05. The complex-model high-heritability
combination included all cases where E > 1,
N > 12, K > 0 and H = 0.50 and 1.0.

On average, over all model scenarios,
the mass and S1 strategies made similar
selection progress for the first 12 years, with
mass selection having a slight advantage ini-
tially, whereas the S1 strategy outperformed
the mass selection strategy from year 12 to 30
(Fig. 11.11a). The effect of increasing the
complexity of the E(N:K) genetic models by
increasing either E (Fig. 11.11b), N (Fig.
11.11c) or K (Fig. 11.11d) was to decrease the
rate of progress from selection. Contrasting
the estimates of the genetic components of
variance between the simple (E = 1, K = 0)
and complex (E > 1, K > 0) model categories
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Fig. 11.10. Schematic representation of the processes involved in the conduct of a cycle of a breeding
programme (adapted from Cooper and Hammer, 1996).



(Table 11.1), on average, the additive genetic
variance was the dominant component for
the simple models and there were no
genotype–environment interactions (Fig.
11.12a). However, for the complex models,
while additive genetic variance was present,
the non-additive component and the geno-
type–environment interaction components
of variance were frequently larger than the
additive component (Fig. 11.12b).

Further considerations examined how
the rates of genetic progress for mass and
S1 selection changed with the four model
complexity–heritability categories described
in Table 11.1 (Fig. 11.13). For the simple
models (Fig. 11.13a: low heritability, and
Fig. 11.13c: high heritability), the rates of

improvement in population mean, expres-
sed on a per year basis, were consistent with
expectations in the absence of epistasis and
gene–environment interactions. With a high
heritability (Fig. 11.13c), population perfor-
mance was increased to the upper limit by
both mass and S1 selection. However, S1

selection took approximately three times the
number of years to reach this limit, since one
cycle of S1 selection took three times longer
than one cycle of mass selection. With a low
heritability (Fig. 11.13a), replication was
important to accommodate the effects of a
higher experimental error and S1 selection
had a greater rate of improvement of perfor-
mance than mass selection. The S1 selection
strategy managed to improve the population
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Fig. 11.11. Change in population mean performance, expressed as a percentage of the performance of the
target genotype (% TG), over 30 years of simulated breeding for higher trait value by mass and S1 family
selection for 720,000 E(N:K) model scenarios: (a) mean for mass selection and S1 family selection over all
E(N:K) models; (b) mean over all other factors and breeding strategies for different numbers of environment
types (E); (c) mean over all other factors and breeding strategies for different numbers of genes (N); (d) mean
over all other factors and breeding strategies for different levels of epistasis (K).



to the upper limit, whereas mass selection
had not reached the upper limit after 30
years. For the complex models where E > 1
and K > 0 (Fig. 11.13b: low heritability, and
Fig. 11.13d: high heritability), the rate of
improvement was much lower than for the
simple models and tended to be more linear
over the duration of the experiment. Given a
high heritability (Fig. 11.13d), the rate of
improvement was similar for mass and S1

selection for the first 18 years, with S1 selec-
tion achieving a higher population mean
by year 30 than mass selection. When the
heritability was low (Fig. 11.13b), S1 selec-
tion outperformed mass selection across all
years, as it had done for the simple model
(Fig. 11.13a).

The results of this simulation study
serve to emphasize the following points:

• A general computer-simulation platform
enables evaluation of any proposed
breeding strategy over many alternative
genetic-model scenarios. An associated
point is, simulation (and theoretical)
studies that consider only one or a
few putative genetic models should be
treated with caution, unless there are
strong experimental grounds for accep-
ting the putative model as representa-
tive of the local breeding situation.

• Computer simulation enables investi-
gation of genetic properties and expec-
tations of a wide range of complex
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Fig. 11.12. Average estimates of additive, non-additive, additive–environment interaction and non-
additive–environment interaction components of variance for all E(N:K) model scenarios categorized
according to Table 11.1 as: (a) simple genetic models (E = 1, N = 12 and K = 0), and (b) complex genetic
models (E = 2, 5, 10, N = 24, 36, K = 1, 2, 3).



genetic models that are extremely
difficult to examine through more clas-
sical algebraic approaches. Therefore,
simulation is one approach for evaluat-
ing the implications of relaxing many
of the simplifying assumptions that
are often used in quantitative-genetic
theory.

• It is feasible to evaluate the efficiency
of any breeding strategy across a con-
tinuum of levels of trait complexity and
heritability.

• The availability of high-speed com-
puting platforms enables an extensive
evaluation of breeding strategies within
a relatively short time frame (Micallef
et al., 2001).

From this analysis, it should be clear
that it is possible to parameterize any simu-
lation experiment to investigate specific sce-
narios when appropriate data on the genetic
architecture of a trait are available. In fact,
one can establish a database of scenarios to
be investigated in a systematic fashion, from
which conclusions can be drawn as traits
become better understood.

Understanding Gene–Phenotype
Relationships

The properties of the E(N:K) model
examples discussed above were based on
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Fig. 11.13. Change in population mean performance, expressed as a percentage of the performance of
the target genotype (% TG), over 30 years of simulated breeding for higher trait value by mass and S1

family selection for the categorization of 720,000 E(N:K) model scenarios according to Table 11.1 as:
(a) simple-model low-heritability (E = 1, N = 12, K = 0 and H = 0.05); (b) complex-model low-heritability
(E > 1, N > 12, K > 0 and H = 0.05); (c) simple-model high-heritability (E = 1, N = 12, K = 0 and H = 0.50
and 1.00); and (d) complex-model high-heritability (E > 1, N > 12, K > 0 and H = 0.50 and 1.00).



analysis of random genetic networks. These
investigations can be broadened to concen-
trate on specific types of gene networks and
experimentally derived gene–phenotype
relationships for a trait or combinations
of traits. A number of models of gene–
phenotype relationships have been pro-
posed for quantitative traits (e.g. Doebley
and Lukens, 1998). The implications of
these models for the power and design of
plant breeding strategies can be quantita-
tively investigated by simulation using the
E(N:K) framework. Chapman et al. (Chapter
12, this volume) used the E(N:K) framework
to evaluate breeding strategies for the
genetic improvement of grain sorghum in
drought-prone environments in Australia.
In their study, experimental data were used
to parameterize the E(N:K) models they con-
sidered. The experimental data were used
to: (i) propose QTL models for four traits
(phenology, stay green, osmotic adjustment
and transpiration efficiency) that are con-
sidered to be important for the adaptation
and yield of grain sorghum in the different
types of drought-prone environments; (ii)
quantify the physiological relationships
between the traits, environmental variables
and grain yield; and (iii) determine the rela-
tive occurrences and influences on yield of
the drought-environment types that make
up the TPE for grain sorghum in Australia.

The novel aspect of their study was
the quantification of QTL or specific gene
effects for component ‘traits’ and their inter-
actions with each other and the environment
by using a biophysical crop-simulation
model. Potentially, this is a powerful
approach for determining the value of a
genotype in an environment in terms of the
component traits and the integrative trait
‘grain yield’. Chapman et al. (Chapter 12,
this volume) utilized simple additive gene
effects to specify the genetic variation for
the four component traits that contributed
to adaptation under drought. When the
effects were measured at the level of grain
yield, there were substantial pleiotropic and
epistatic effects associated with the genes for
the component traits. The genes associated
with favourable expression of the different
traits varied with selection environment

type. With selection for grain yield, the traits
were fixed at different rates depending on
their value in the selection environments
encountered. Hence, the resultant adap-
tation landscape for yield was akin to a
complex E(N:K) model when compared
with an additive trait landscape that was not
modulated by gene interactions through bio-
physical simulation (Chapman et al., 2001).

The issues raised in this preliminary
research into a specific gene network iden-
tify three layers of complexity in gene–
phenotype models in addition to those
sources considered in Table 11.1. First, there
is the complexity introduced by the way
an experiment is measured and analysed. If
the genes for a trait are segregating, are the
context-dependent gene effects that we
observe at the yield level simply indicative
of the fact that we are not observing the
segregation of the underlying yield-
determining physiological components?
Secondly, following on from the first point
above, we need to consider the level of
complexity involved in understanding the
hierarchical nature of physiological inter-
actions among traits within an organism and
between the organism and the environment
during plant growth and development.
Physiologists frequently refer to traits being
constitutive (i.e. expressed in all environ-
ments) or adaptive (i.e. expressed under a
specific environmental influence). Adaptive
traits are particularly vulnerable to being
misinterpreted where it is difficult to
quantify the effect of the environment on
a particular trait. Thirdly, when analysing
trait contributions to adaptation and yield, it
must be recognized that component traits
interact in a time sequence of expression
over the duration of the crop growing season.

With these layers of complexity, the
form of the gene–phenotype relationships is
likely to be highly variable among target
traits. For example, if the trait being consid-
ered was resistance to a pathogen with a
simple genetic basis, then, in a set of segre-
gating populations, there is likely to be a
high correlation between the occurrences of
the alternative alleles of the gene and trait
phenotypes, i.e. symptoms of susceptibility
and expression of resistance in a particular
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tissue following infection. Obviously, the
gene–phenotype relationship is relatively
simple in this case and QTL identified for
such a trait are likely to be quite well corre-
lated with the gene presence and therefore
provide useful input data for genetic simula-
tions. In contrast to the above biotic-stress
example, crop adaptation to the biophysical
environment and many abiotic stresses is
often far more complex. For example, in
sorghum, the trait ‘stay green’ (the ability
of plants to keep leaves green at the
end of a drought period) is a target of sev-
eral molecular-mapping programmes (e.g.
Subudhi et al., 2000; Tao et al., 2000).
Several putative QTL have been identified
for the trait. However, while some forms of
‘stay green’ are known to be ‘cosmetic’, the
physiological mechanism for this form of the
trait is unknown. Borrell et al. (2000) noted
that genotypes of sorghum that differed for
their degree of ‘stay green’ near the end of the
season were different in nitrogen (N) content
per unit leaf area. This suggests that, given
similar requirements for N in the grain of
different hybrids, ‘stay green’ near maturity
could in part be simply an effect of dif-
ferences in uptake of N during vegetative
growth in the first part of the season. Such a
finding in the ‘stay green’ mapping popula-
tions would have substantial implications
for marker programmes determining whether
(if any) QTL identified in the mapping
studies are even close to the physical site for
‘stay green’ or are of real value in the target
environments. Providing that the biophysi-
cal models of gene–phenotype relationships
are backed by effective field experimenta-
tion to validate the models, they should
begin to help determine when an adaptive
trait becomes a suitable target for selection.

Synopsis and Speculation

Schrage (2000) in his book Serious Play
discussed the many roles of simulation as
an innovation tool and how it had been
used in a range of industrial applications.
We would argue that many of the points he
makes are also relevant for the application
of simulation in the design and evaluation

of plant-breeding strategies. Kempthorne
(1988) argued that many of the limitations
that are faced in the classical application
of algebraic approaches in the development
of theoretical models for complex traits
in quantitative genetics can be overcome
through combining high-performance com-
puting capability with a flexible simulation
platform. We have found that this is indeed
the case (Podlich and Cooper, 1998; Cooper
et al., 1999; Micallef et al., 2001). With the
growing body of experimental data on the
genetic architecture of traits for our impor-
tant agricultural species, there is now a
significant opportunity to examine the
global and local features of the adaptation
landscapes that we face in our breeding pro-
grammes. To exploit these data sources effi-
ciently requires information-management
systems and bioinformatics tools that link
these information sources to the simulation
platform.

There is a growing body of research into
the multifaceted roles of epistasis in the
evolutionary process (Wolf et al., 2000).
Much of the work on the molecular structure
of gene networks and gene regulation sug-
gests that epistasis is likely to play an impor-
tant role in determining genetic variation
in quantitative traits. However, in the con-
struction of prediction equations for plant-
breeding purposes, the assumption of the
absence of epistasis is virtually ubiquitous.
The analyses we have conducted based on
random and structured gene networks using
the E(N:K) model indicate that the conse-
quences of making this assumption when
epistasis is indeed present are in general
likely to result in overprediction of genetic
gain (e.g. Figs 11.11d and 11.13). The quali-
tative feature of this result has been appreci-
ated for a long time. It is also appreciated that
the extent of the overestimation of expected
genetic gain is likely to be context-specific
and will depend on the detail of the form of
epistasis that exists, the allele frequencies
for the genes involved in the gene networks
and the linkage relationships among the
alleles within the reference population of the
breeding programme. These factors, together
with the considerable difficulty associated
with experimentally demonstrating strong
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epistatic influences for many quantitative
traits, have contributed to the limited atten-
tion given to developing prediction equa-
tions that explicitly accommodate epistatic
effects, other than treating them as a source
of error in the prediction equation. Many of
these limitations can be overcome by apply-
ing a comprehensive computer-simulation
approach to the problem.

While it is often argued that there is
limited experimental evidence for epistasis
in studies of agronomic traits, several empir-
ical studies have shown that epistasis is
significant for quantitative traits, such as
yield in small-grain crops (as reviewed by
Goldringer et al., 1997). Work focused on
both describing the genetic architecture of
quantitative traits at the level of gene net-
works and understanding gene–phenotype
relationships has emphasized the need to
give greater attention to the potential effects
of epistatic interactions among genes and the
interaction of the genes in these networks
with environmental factors (e.g. Doebley
and Lukens, 1998; Schlichting and Pigliucci,
1998). Analysis of the implications of
these more complex trait architectures is
not a trivial task. However, the hardware
and software to apply computer-simulation
methodology to this problem have advanced
greatly, even in the short time since Kempt-
horne (1988) speculated about the feasibility
of a computer-simulation-based approach
to advancing quantitative-genetic modelling
methodology. Thus, it is feasible to under-
take in silico investigations of trait archi-
tectures that range from the more classical
models assumed in quantitative genetics to
highly complex gene-network structures
that have the potential to interact with
environments. Using computer simulation
we have found that breeding strategies can
indeed differ in their capacity to accom-
modate some of the effects of complexities,
such as genotype–environment interactions
(Podlich et al., 1998) and epistasis (Podlich
and Cooper, 1999).

Earlier, we commented on the dominant
position of the Fisher modelling methodol-
ogy in the development of plant-breeding
theory. In contrast, the details of the gene
networks that are in the process of being

uncovered, using the tools of molecular
genetics, appear to be more compatible with
some of the models and concepts discussed
by Wright. We do not see these two model-
ling frameworks as incompatible. Simula-
tion analysis of quantitative-trait models
using the E(N:K) framework provides scope
for exploring several of the important theo-
retical issues, some of which were debated
by Fisher and Wright. The capacity to jointly
interpret gene-network models in terms
of the structure of adaptation landscapes
and the additive and non-additive effects of
genes demonstrates some of the common
ground that can be found between these two
views of the properties of quantitative traits.

Much of the theoretical treatment of
breeding strategies considers them as single-
search programmes seeking improved geno-
types. In practice, larger breeding programmes
do not operate as a textbook single-search
programme but are better considered as
connected multiple-search strategies. By
multiple-search strategies here we mean that
there are multiple breeding activities semi-
independently searching the genetic space
and actively comparing and exchanging
improved germ-plasm. Podlich and Cooper
(1999) used the E(N:K) model to examine the
efficiency of single-search and multiple-
search breeding strategies. In their pre-
liminary study they found that, as the
complexity of the genetic architecture of the
trait increased, due to the effects of epistasis
and gene–environment interactions, there
were significant advantages of the multiple-
search strategy over a single-search breeding
strategy. Clearly, there is much work to be
done if we are to understand the ways in
which the three key components, breeding
strategy, trait architecture and germ-plasm
dynamics, interplay to determine the effi-
ciency of the breeding process.

Summary and Conclusions

Plant-breeding programmes are a practical
use of financial, human, scientific and
genetic resources. These are applied in con-
cert to search genetic space in ways that
seek new genotypes that are superior to
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those genotypes already in hand. Some of
the features of the genetic space in which
these searches are conducted are being
uncovered with the use of genomic technol-
ogies. The traits we attempt to manipulate
can range in complexity because of differ-
ences in the numbers of genes involved,
interactions among genes within networks
(epistasis) and interactions between genes
and environmental conditions, thus influ-
encing the degree of difficulty encountered
in manipulating plant development, trait
expression, adaptation and ultimately yield
and quality. For the resource base of a
breeding programme, it would be useful to
quantify the capacity to manipulate traits of
differing genetic architecture and complex-
ity. At present, we have at best a limited
understanding of the relationships between
the power of plant-breeding strategies to seek
new genotypes and the complexity of the
genetic space in which that search is being
undertaken. With advances in computer
software and hardware and our growing
genomic databases, computer modelling of
plant-breeding strategies provides a power-
ful tool for in silico innovation and optimi-
zation of breeding programmes.

We conclude with the following specu-
lation. A fundamental paradigm in the appli-
cation of the tools of molecular biology to
reveal gene–phenotype relationships is that,
through understanding the function of every
gene, we shall be able to elucidate, describe
and predict the gene–phenotype relation-
ship. The combinatorial complexity of this
task is analogous to the concept in physics of
describing the properties of every molecule
in an ideal gas as a basis for predicting
the behaviour of the gas. In fact, due
to the potential for high-level interactions
between the components of the genotype–
environment systems, the combinatorial
complexity is likely to be greater in the bio-
logical systems than in many of the physical
systems. Nevertheless, in physics, if we wish
to describe the properties of the gas, we do
not describe each gas molecule and accumu-
late their independent effects; instead, we
describe the integrated statistical properties
of the gas. We do not need to follow the
behaviour of every gas molecule to know

that the gas will tend to expand in space
when it is heated. It is probably common-
place that genes function in networks and
therefore many of the effects of genes may
be context-dependent. Networks have basic
properties that determine their behaviour.
There are two basic behaviour types for net-
works: ordered or chaotic (Kauffman, 1993).
A key network property is the way in which
the genes are interconnected. This is empha-
sized by the E and K parameters in the E(N:K)
model. It seems likely that specific types of
network connections have been preferred as
evolutionary trajectories by the combined
effects of network properties and selection.
Thus, the robustness of many of the extant
gene networks may have been a target of
selection for quantitative traits in evolution-
ary history. If this is the case, applying
genomic tools to identify the key regulatory
genes within gene networks will be critical
to understanding the genetic architecture of
quantitative traits and to achieving their
directed manipulation in breeding program-
mes. With the above arguments in mind, we
consider that, in the 21st century, computer
simulation will be a central tool in the
evaluation of breeding strategies for their
power to improve quantitative traits.
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Crop Adaptation as Determined
by Gene Networks

Syngenta recently announced the complete
sequencing of the first crop genome (rice).
While the public sequencing of Arabidopsis
thaliania provides a useful model tool,
extrapolation from Arabidopsis to other
dicots (e.g. Lan et al., 2000) and from rice
to other cereals (Moore, 2000) will generate
substantial information about the physical
make-up and location of genes in the chro-
mosomes of our major food crops. The rice
map claims to contain the DNA sequence of
every gene, their regulatory sequences and
the correspondence between the genome
map and the plant breeders’ map of inher-
ited traits. While this provides exciting
targets for the manipulation of traits
associated with tolerance/susceptibility to
chemicals, grain quality and pest resistance
(Somerville and Somerville, 1999), what
opportunities will this avalanche of
molecular knowledge reveal to improve
biological yields and crop adaptation to
physical environments?

The principal objective of a plant-
breeding programme is the generation and
selection of new gene combinations to
create genotypes with trait performance that
is superior to current genotypes, within the
target population of environments (TPE)
(Comstock, 1977). This objective applies
equally to conventional, molecular and
combined approaches. For relatively simple
adaptation targets, such as single-gene pest
resistance, access to the genome sequence
will allow molecular biologists and breeders
to look for the better alleles for pest resis-
tance and even to modify gene sequences or
mutate genes to create new resistances (e.g.
Collins et al., 1999). Sequencing, though,
is only a part of the story. The 99% perspira-
tion that is now to be done is to determine
how to create genotypes by combining
together the superior combinations of genes
as they interact within a crop plant as it
grows and responds to the physical environ-
ment that it encounters.

Networks of genes coordinate the
process of gathering nutrients, photosyn-
thesizing and metabolizing the various
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compounds that make up a plant and direct
its systems for growth, development,
resource acquisition and defence against
pathogens. Many defence-gene networks
can be thought of as having a specific envi-
ronmental challenge to detect and respond
to, often providing a straightforward model
for the screening of gene expression for
upstream regulation genes (e.g. Schenk
et al., 2000). In this way, these defence-gene
networks are similar to the gene networks
that apparently respond to extremes of
abiotic stress and are a major subject of
research in molecular biology (e.g. Ingram
and Bartels, 1996; proline accumulation
pathways: Hare et al., 1999). However, the
accumulation of solutes is one of the last
processes to occur in stressed plant tissues
(Hsiao, 1973; Ludlow and Muchow, 1990)
and, as such, extreme abiotic stress can
frequently be classified as a catastrophic
hazard for crop yield, even if the gene
responses help in plant survival (Bidinger
et al., 1996). In this respect, the classification
of genes as ‘stress’ genes is misleading, i.e.
the responses of the major genes controlling
normal growth and development are also
stress genes. For example, cell expansion,
rather than photosynthesis or solute accu-
mulation, is the first process to be affected
by decreased tissue water potential (Hsiao,
1973). So coping with the seasonal variation
in radiation, temperature and water supply
is largely a matter of ‘improved’ regulation of
the genes that are already expressed under
‘optimal’ growing conditions. It is this ‘inter-
mediate’ condition of adaptation to enable
the plant to continue to capture resources
(i.e. continuing canopy and root expansion)
for improved crop yield that will generate
economic benefits in the many environ-
ments where plants experience substan-
tial, but not catastrophic, levels of stress
(Bidinger et al., 1996). Unfortunately, it is
also a difficult issue to address, due to the
need to control genes that are operational
under both optimal and stress conditions.

To document this complexity of inter-
actions, we shall need to link the tools and
databases that are developing in all of the

research areas (genetics, molecular biology,
plant breeding, plant and crop physiology)
in order to understand the effects of gene
networks associated with crop traits and
how these are mediated by genetic variation
and the environment. In turn, this requires
an analysis framework to interpret the rules
that govern this network of gene inter-
actions, rather than trying to define every
component. The study of networks now
pervades all of science and their description,
using mathematical models, is frequently
described as science’s major challenge
(Strogatz, 2001). Cooper et al. (1999) and
Cooper et al. (Chapter 11, this volume)
have presented a simulation framework that
allows us to describe the processes involved
in a plant-breeding programme. In this
chapter, we expand on the characteristics
of that simulation framework to one that
captures gene interactions through model-
ling a biologically complex system.

Plant breeders attempt to manipulate
gene networks to improve crop yield and
quality and tolerance to external stresses.
In the simplest terms, plant breeders try to
combine together, in a single cultivar, the
best alleles of each gene acting in combina-
tion with each other and the environment.
This chapter aims to outline how these
processes can be simulated (often with
incomplete knowledge) to discover optimal
methods of plant breeding while consider-
ing the entire spectrum of influences from
the gene action to the cropping system. Our
first objective here is to describe how simple
and complex gene networks can be linked to
plant response and variation of the pheno-
type and show how these gene–phenotype
relationships can be characterized and
improved by marker selection. We further
aim to illustrate three points made by Cooper
et al. (1999) regarding the use of in silico
crop modelling to improve the efficiency of
plant breeding: (i) characterizing environ-
ments to define the TPE; (ii) assessing the
value of specific putative traits in improved
plant types; and (iii) enhancing integration
of molecular genetic technologies with an
example utilizing molecular markers.
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Linking Gene to Phenotype – Integration
and Signalling across Scales

The genetic-simulation framework under-
lying the Quantitative Genetics (QU-GENE)
model (Podlich and Cooper, 1998; Cooper
et al., Chapter 11, this volume), was
designed around the commonly used model
in quantitative genetics whereby an allelic
variant of a gene is defined as a stochastic
effect without an explicit requirement to
specify the biophysical process controlling
the effect. Cooper et al. (Chapter 11, this
volume) have given examples of how low
and high levels of both heritability and com-
plexity of trait behaviour affect the behav-
iour of stochastically described genes. This
behaviour can be biologically specified and
perhaps will, in the future, be defined at
a biochemical level for limited numbers of
segregating genes, using information gath-
ered with genomics approaches. However, a

statistical interpretation of all of the allelic
values for genes in all pathways, across a
season, is unlikely ever to be feasible or
desirable, if it does not help us discriminate
among breeding methods to improve crop
performance. Our challenge is to incorpo-
rate the biological basis for gene networks
and gene–phenotype relationships into this
stochastic framework to capture and inter-
pret how patterns of interconnection among
gene effects generate the emergent pro-
perties that influence the performance of
genotypes across environments.

In a simple example of a gene–
phenotype relationship, an enzyme might
utilize substrates (brought to the cell by
the actions of other genes) to make a new
product that can be described as a ‘cellular
trait’ or molecular phenotype (Fig. 12.1). In
a cereal, an example of such a trait might
be the hormonal switches that cause new
cells in the growing meristem to become
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‘reproductive’ rather than ‘vegetative’ (see
Koornneef et al. (1998) for a discussion of
the molecular basis for this). These switches
are associated with the external signals of
temperature and photoperiod and internal
development cues. At the plant level, this
trait would be physically observed, first, as
floral initiation (under a microscope) and,
after several weeks, head emergence and
flowering of that growing point. Expression
of this trait as observed at the crop level
could be the ‘average flowering date of the
population of plants’ in the field. That trait
then has an eventual effect on yield (e.g.
earliness helps to avoid late-season drought,
but reduces potential yield) and the viability
of the cropping system (earliness uses less
nitrogen (N) and water from the soil, but, at
the same time, provides less stover to protect
against soil erosion).

Scales of integration within a cropping
system influence the assembly of gene vari-
ants that make up a genotype (Fig. 12.1). At
the cellular level, it may be that a single gene
controls a part of a pathway. Allelic variants
of this gene may cause it to be transcribed in
response to a slightly different time or tissue
location or set of local (cell?) environmental
conditions. It is important to recognize that
while the actions of genes propagate upward
from the cellular level, the environmental
signals also propagate from the cropping sys-
tem back to the cell. Figure 12.1 implies that
the timing and intensity of the ultimate ‘sig-
nal’ for gene action at some point during the
growing season (e.g. increased the activity of
nitrate transporters in the roots or drought-
induced slow-down in leaf growth) may have
been a function of the effects of the density of
the planted crop or even the effect of a previ-
ous crop on the soil resource. In dryland
environments, such as Australia, this appre-
ciation of long lag-time effects on crop growth
is a key part of a cropping system that ‘farms’
soil water. For example, excess N applica-
tion to a wheat crop in a soil containing
low stored soil water at planting can greatly
lower yields if the season happens to be one
of low rainfall, i.e. the excess N encourages
excessive early-season growth relative to the
water supply available for grain filling later
(Cantero-Martinez et al., 1999).

The process of gene action at the cellular
level has been extensively studied and mod-
elled in cell culture and simple systems, e.g.
GEPASI (Mendes and Kell, 1998; Giersch,
2000). Genes are programmed to be ‘switched’
on or off in response to internal cues, such as
developmental age, and external cues, such
as photoperiod or temperature. In reality,
the system of ‘switching’ involves complex
networks of genes, with some designed to
‘detect’ cues, others to initiate a response
(‘signalling genes’) and others to actually
produce the outcome (‘action genes’) that
can be measured. Much current molecular
research is aimed at determining what the
signalling genes for processes are, with the
eventual intention that up-regulating these
genes will propagate an increase in the activ-
ity of the genes controlled by the signal (e.g.
Hare et al., 1999). The eventual response to a
signal can be due to an up- or down-regulation
of the amount of ‘action gene’ transcribed
and/or modification of its activity. Many
products in plants are known to participate
in ‘futile’ cycles, which could have the pur-
pose of allowing a plant to respond quickly
to a signal to change the activity and/or
amount of gene product. Each gene product
in a biochemical pathway also has a particu-
lar level of efficiency related to its structure,
substrate availability and the multitude of
other pathways operating in the same cellu-
lar compartment. Allelic variation can act at
each of these points of signal detection, tran-
scription and actual activation of the prod-
uct, as well as in other genes that affect these
steps. Any observed trait at the tissue or
plant level, then, has already been filtered
through these steps and its action is substan-
tially masked by this complexity, as well
as by the compartmentalization of many
reactions and the time required for effects
to be observable.

Modelling a simple gene–phenotype
relationship for a trait

Models of crop yield in response to environ-
ment include both regression-type models
(e.g. regression of yield against in-season
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rainfall) and dynamic biophysical crop-
simulation models, e.g. CERES (Ritchie,
1991), SUCROS (Bouman et al., 1996)
and APSIM (McCown et al., 1996). Crop-
simulation models typically utilize a daily
time step, with inputs of soil descriptions
and weather, to integrate the growth of the
crop across the day and accumulate the
value of growth components (weights and
structure of plant parts, size of leaf area,
root system) and their exchanges of carbon
and N and water status over the season.
Thus, when accommodating the effects of
traits within a crop model, modellers have
to consider how the traits propagate across
the scales of cell to plant to crop in parallel
with the passage of time.

Consider the trait of ‘flowering date’ as
an example. Cropping-system models aim to
use daily inputs of weather to represent the
genetic effects of development and environ-
mental signals on flowering date. Thornley
(1972) proposed that we could build a model
of the biochemical switch by accumulation
of hormonal signals over time-scales of days
and weeks. Certainly this is possible, and
yet crop-simulation models have functioned
well by specifying temperature and photo-
period models that predict the date of floral
initiation and maximum leaf number, such
that flowering date (in cereals) becomes a
linear function of the constant (thermal)
time taken for each leaf to emerge (e.g.
Ritchie and Nesmith, 1991). Genotypic dif-
ferences are represented by different para-
meter values in these (usually) non-linear
functions associated with predicting floral
initiation. The APSIM model also attempts
to represent the feedback effects on phen-
ology of stresses due to water and N deficits
(Hammer et al., 1996b). Apart from captur-
ing genetic variation, crop modelling offers
the potential to interpret and predict perfor-
mance given different management situa-
tions, including both long-term decisions
(e.g. to maintain system sustainability) and
seasonal decisions, such as those associated
with planting time and fertility management.

One can see how qualitative traits,
such as some seed colour, which depend
on allelic variation (presence/absence) that
blocks a pathway, can be easily observed in

plants. It is perhaps remarkable that there are
any quantitative plant- or crop-level traits
that appear to have several major genes
under simple gene action. However, this
may be an emergent property of gene
networks (see Cooper et al., Chapter 11, this
volume). Plant height (e.g. Fujioka et al.,
1988) and flowering time (e.g. Koornneef
et al., 1998) are two such traits for which the
pathways and action are being discerned.
The control of grain number in cereals in
different environments at first appears to be
much more complex, but agronomists and
physiologists have developed some ‘short
cuts’ to describe this control.

Complexity from simplicity – pleiotropic
effects of height genes

Pleiotropy can arise directly from a single
gene affecting multiple traits (e.g. where the
same dwarfing gene reduces the size of all
plant parts) or as an indirect effect where a
dwarfing gene might reduce the lengths of
internodes and thereby affect the canopy
development and long-term biomass accu-
mulation by the crop. Differences in pat-
terns of the segregation for traits that appear
to be quantitative at the plant level can arise
due to variation in the action of multiple
genes affecting a single major gene pathway
or because the trait is actually an integrated
result of several pathways acting over time.
A simple example of genes with known
effects at the cellular level that can be
readily observed at the plant level is the
association of gibberellin-synthesis genes
with plant height (Phinney, 1956). Quinby
and Karper (1954) determined that in grain
sorghum, for example, there are four major
unlinked genes associated only with inter-
node length, creating five recognized classes
of height from zero-dwarf to four-dwarf (see
review by Morgan and Finlayson (2000) for
some of the comments that follow below).

These height genes can operate inde-
pendently of the flowering-time genes, which
also have a major influence on height. For a
given set of height genes, a later-flowering
genotype produces longer nodes and reaches
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a greater height than an early-flowering
genotype, i.e. in this case, the height differ-
ence would be a pleiotropic effect of a flow-
ering (photoperiod-responsive) gene. While
most grain-sorghum-breeding programmes
work with ‘mid-size’ lines (three-gene dwarf),
height genes per se have been recognized in
sorghum as being positively correlated with
yield, particularly in environments where
plant lodging is not frequent (Morgan and
Finlayson, 2000). The reason for this correla-
tion is not clear. Breeders have noted that
some single-gene, recessive mutants of maize
suffer easily observed pleiotropic effects
on leaf and tassel size, whereas in sorghum
the mutants tend to be brachytic (confined
to internode length). Physiologists are (or
should be) more concerned with the effects
of this change in stem-elongation pattern fol-
lowing floral initiation on the ability of the
crop to utilize radiation and water resources.
While there is little evidence that height
genes affect root extension, the higher yields
indicate that there are apparently other
indirect effects of these height genes on can-
opy development and light-use efficiency
and possibly on the accumulation of stem
reserves for later use during grain-filling.
These effects are likely to be exacerbated
(both positively and negatively) by different
patterns of drought stress during the season,
although there has been little crop physio-
logical research to investigate this. For
example, if the taller genotype grows more
quickly, and yet uses soil water at the same
efficiency as its dwarf mutant, the taller
genotype would be likely to yield poorly in a
season when soil water is not replenished
during grain-filling. This type of season is
quite common in north-eastern Australia
(see later discussion) and serves to empha-
size the flow-through effects of cellular traits
at the plant, crop and cropping-system levels
(Fig. 12.1).

One summary of these considerations is
that an apparently simple trait in terms of
gene action (directly affecting a gibberellic
acid pathway and influencing potential cell
size and elongation rate) causes complex
pleiotropic effects on the crop yield in differ-
ent environments. Most crop models do not

simulate height at all and they rarely attempt
to capture any feedback mechanisms that
result. In contrast, virtually all crop models
do capture the effects of flowering time
(Ritchie and Nesmith, 1991), which can
be broadly considered as having a similar
number of major genes and biochemical
pathways that are understood to a similar or
slightly greater level (Koornneef et al., 1998).
It seems that height as a crop trait is largely
avoided by crop modellers, perhaps due to
its substantial interaction with the notori-
ously difficult problem of ‘interpreting the
rules’ of carbon partitioning. This issue
cannot be avoided once we attempt to
simulate grain yield.

Simplicity from complexity – control of grain
number under drought stress

A key attribute of most cereal simulation
models is prediction of the size of the yield
‘sink’, usually in terms of grain number.
The size of this component is critical to the
later prediction of yield, since grain number
is almost universally correlated with yield
within sets of related genotypes in a given
environment. In maize, plant breeders have
long recognized (e.g. Lonnquist and Jugen-
heimer, 1943; Stringfield and Thatcher,
1947) and exploited genetic variation for
the ability to set greater numbers of grains
per plant under difficult conditions, such
as drought (Fischer et al., 1989; Bolaños
and Edmeades, 1993) and high density
(Troyer and Larkins, 1985). It is one of the
few crop physiological traits to benefit from
research that encompasses all system levels,
from gene expression to crop agronomy and
active plant breeding.

Grain number in maize is particularly
sensitive to reduced carbon supply (through
drought, density or shading) from the time
of ear initiation until the linear period
of grain filling begins. The major effects
under drought have been well described by
Edmeades et al. (2000), while the general
physiology of the kernel setting in maize
is covered well by other papers in that
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monograph. In summary, prior to silking,
one can describe the consequence of drought
as ovary abortion and, while some grains
may then be lost due to effects on pollina-
tion, abortion of fertilized embryos also con-
tinues during early grain fill. The occurrence
of ovary abortion is correlated with a reduc-
tion in the growth rate of ears prior to silking
and a consequent delay in the date of silking
relative to anthesis (i.e. a long anthesis–
silking interval (ASI)). Under controlled
drought and among lines of similar anthesis
date (that are all experiencing the same degree
of stress on ear growth), breeders have been
able to select superior lines as those with
shorter ASI and higher ear number per plant,
grain number per ear and grain yield.

The control of ovary abortion has been
investigated in some novel experimentation
over the last 10 years or so (summarized
by Zinselmeier et al., 1999), including the
finding that feeding sucrose into the stalks
of drought-stressed maize could reduce,
but not completely recover, the number of
ovaries aborted. Zinselmeier et al. (1999)
investigated the biochemistry of starch
biosynthesis and came to the following
conclusions:

1. Under reduced carbohydrate supply,
when ovary starch was sufficiently depleted,
the ovary was aborted (at ovary water poten-
tials more negative than −1 MPa).
2. When fed sucrose, sucrose was unloaded
into ovary pedicel cells (i.e. membrane trans-
port was unlikely to be the limiting step).
3. Even when sufficient sucrose was fed,
starch biosynthesis from sucrose in the ovary
was still reduced.
4. Blockage in the sucrose–starch bio-
synthesis pathway appeared to occur at the
first step, mediated by acid invertase.

The reduction in acid invertase was
associated with down-regulation of genes
associated with expression of this enzyme,
as well as others in the starch biosynthesis
pathway (C. Zinselmeier, personal commu-
nication). In young ears under drought stress,
transcription of other genes, including cell-
cycle, stress-responsive and abscisic-acid
(ABA)-related genes, was affected (Sun

et al., 1999). In summary, there is
apparently some signal that is causing this
down-regulation and consequent embryo
abortion, despite artificial replenishment of
the sucrose supply. At present, this signal
is unknown (Zinselmeier et al., 1999) and
genetic variation for the effect is not
documented.

Crop physiologists and modellers have
been undeterred by this lack of knowledge
about the cellular-level control of grain num-
ber. This notion of deriving crop responses
rather than describing them is not new and
is akin to the concept of modelling plant-
hormone action without modelling the
hormones (de Wit and Penning de Vries,
1983). The approach is to ascertain and
model the rules and processes governing
crop responses to environmental conditions.
These rules enable a complicated array of
crop responses to emerge as properties,
given differing combinations of conditions.
Further, robust empirical relations of these
emergent properties can be derived for use in
crop models, as, for example, with RUE and
leaf N status (Sinclair and Horie, 1989).

This effect has been captured at the crop
level by a correlation between plant growth
rate during these sensitive stages (derived
from different treatments or environments)
and the number of grains per plant that
were set (Fig. 12.2, idealized from Tollenaar
et al. (2000)). In maize, researchers have rec-
ognized that this relationship varies with
cultivar (Tollenaar et al., 1992). Edmeades
et al. (2000) showed that selection, as des-
cribed above, effectively increased the num-
ber of grains produced per unit growth rate,
particularly at low growth rates experienced
under drought conditions. Though integrated
across several weeks, this crop physiological
relationship captures the essence of the
‘mystery signal’ to which Zinselmeir et al.
(1999) alluded.

What use can we make of this ‘reverse
physiology’, i.e. the process of observing the
system to discern control, rather than the
cellular components? First, Edmeades et al.
(2000) and Fig. 12.2 indicate the importance
of selection environment in determining the
basis for genotypic differences. While there
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may be cases where the genotypic differ-
ences are consistent across all environ-
ments, in maize, stress environments have
to be used to reveal the genotypic variation
in this trait. Secondly, the slope of the
grain-number/growth-rate relationship in
a segregating population under a series of
different environments could generate a
more environmentally stable quantitative
trait locus (QTL) than would grain yield. It
should describe an inherent self-correcting
character of the response to drought. In
maize, breeders have found that the attribute
ASI is highly correlated with grain number
per plant under drought conditions and pro-
vides useful QTL per se (Ribaut et al., 1996).
However, a grain-number/growth-rate QTL
would be useful in other cereals and prefera-
ble to attempts to explain grain yield in
terms of yield components, such as grain
number, when the environment effects have
confounded such data through genotype–
environment interactions (Ribaut et al.,
1997). While this is just an example of taking
a crop-physiology view, such a QTL or one
based on a similar derivation may even be
closer to the physical chromosomal location
of control of grain set.

The process described above emphasizes
a major paradigm of modern approaches to
crop modelling – attempting to interpret
complexity by modelling from ‘the top,
down’ and aiming to identify conservative,
‘genetic’ parameters that affect the processes
of plant growth and development (Hammer,
1998).

A flexible biophysical crop-simulation
platform

In recent years, cropping-system models
have adopted an object-orientated modular
system of modelling the various processes
of soil water and N cycling and species
models for plant uptake and utilization of
nutrients, plant growth, development and
partitioning of carbon and N (McCown et al.,
1996). This allows the system components
to be tested independently, which is possi-
ble only in a truly modular design. Since
1996, the APSIM model has developed a
similar approach to modelling crop-growth
processes, e.g. one can incorporate multiple
approaches of modelling leaf development
and compare their performance, independ-
ent of changes in the other crop or system
processes, such as radiation interception or
soil-water balance (Hammer, 1998; www.
apsru.gov.au). The open-ended structure of
the crop template within the crop model
(Fig. 12.3) also allows additional complex-
ity within and among growth processes to
be added and tested as knowledge increases.
All of the crop/cultivar parameter descrip-
tions are stored external to the code so that
the system is easily interfaced with genetic
models, such as QU-GENE, which can act as
suppliers of genetic parameters. Chapman
et al. (2002b) detailed an implementation of
such linkages between APSIM and QU-GENE.

The submodules in the crop template
vary from rational and derived empiricisms
(e.g. see the description of modelling flower-
ing date above) to process-based approaches
founded on a fairly complete understanding
of the dynamics of crop physiology. As out-
lined in the previous section, important in
the template design is the notion of emergent
properties. A purely descriptive model may
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per plant for different rates of plant growth rate
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2000).



be more accurate in a given situation, but its
behaviour is less likely to be suitable when
it is forced to the extremes of genotypic
and environmental variation. The template
approach allows us to evaluate these emer-
gent properties when trying to capture the
behaviour of complex biological systems.
With the physiological framework in hand,
we attend to the questions posed by Cooper
et al. (1999).

Characterizing Environments in
a Cropping System

Knowledge of the structure of the target
population of environments is an essential
part of designing an efficient plant-breeding
programme, particularly when it is impos-
sible to undertake saturated testing of
genotype performance in the TPE. Biotic
challenges can be substantial barriers to
production and must often be overcome
through novel breeding and screening
approaches. Abiotic challenges, such as
drought, are more insidious in their effect.
The sequence of environments sampled in

breeding trials is extremely variable for
most dryland crops in Australia. Conse-
quently, the selection pressures on breeding
lines are quite different from those experi-
enced when the samples of environments
are constant across years. The problem for
plant-breeding programmes arises when
their testing or sampling regimes do not
align well with the long-term expectations,
i.e. if the Australian sorghum-breeding
programme experiences 2–3 years of high
rainfall, selection for drought tolerance will
have been limited.

The occurrence of drought has been
addressed for sorghum in Australia by
simulating the drought stress experienced
by a crop, given the weather record and soil
information (Cooper and Chapman, 1996;
Chapman et al., 2000). The simulation
model generated a drought-stress index
for each day (1.0 = no stress) and, after the
season indices were grouped across years
and locations, three major patterns were
identified. Figure 12.4 shows the patterns of
three types of drought simulated from 108
years of data at six locations that represent
the major sorghum-production regions. The
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frequency of occurrence (Fig. 12.5) of these
drought patterns over all seasons and loca-
tions can be thought of as approximating the
boundaries of the TPE. Figure 12.6, averaged
for the entire TPE, shows how two different
maturity genotypes yield under these dif-
ferent types of stresses. The later-maturing
genotype, with a mean flowering date of 71
days after emergence, has an overall yield of
4.08 t ha−1 – i.e. 0.64 t ha−1 greater than that
of the early-maturing genotype (63 days).
However, the late-maturing genotype yields

less in severe terminal-stress environments,
as it cannot ‘escape’ the effects of terminal
drought.

What is the consequence of differences
in the sampling of the TPE in plant-breeding
trials for the interpretation of genotype per-
formance? In Fig. 12.5, it can also be seen
that a sample of 3 years and six locations in
1993–1995 would have sampled these stress
types in about the same proportions as they
occur in the TPE. However, in 1981–1983,
the sample was greatly biased against the
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Fig. 12.4. Three major drought-stress patterns in six locations over 108 years of sorghum simulations
(adapted from Chapman et al., 2002b).

Fig. 12.5. Frequency distribution of three drought-environment types over the TPE (108 years/six locations)
or in two samples of the TPE in 1993–1995 or 1981–1983.



severe terminal stress (Fig. 12.4) that causes
reranking of the different maturity types (Fig.
12.6). In fact, in 1981–1983, the mean yield
advantage of the late (4.52 t ha−1) over the
early (3.52 t ha−1)-maturity type was 1 t ha−1,
whereas in 1993–1995, the advantage was
only 0.5 t ha−1 and was closer to the long-
term difference of 0.64 t ha−1. Hence, the
estimates of genotype performance from the
years 1993–1995 are, therefore, more repre-
sentative of the long-term record than the set
of years 1981–1983, as the latter sample was
biased against the severe terminal stress.

The classification of environments in
this way can be utilized directly. Chapman
et al. (2000) showed that the long-term
frequency of severe-stress environments
at different locations was associated with
differences in their ability to discriminate
among cultivars in the sorghum hybrid-
testing programme. Hence, the patterns
of genotype–environment interactions for
grain yield were also affected. In real
time, the environments sampled in a hybrid
trial can now be simulated and classified
as being of a particular drought type to dis-
cern whether a set of trials has adequately
sampled the TPE. Using the framework
described by Cooper et al. (Chapter 11, this
volume), Podlich and Cooper (1998) have
demonstrated that this information can be

used to weight the sample environments by
their expected frequency in the TPE and
improve the rate of selection gain for a vari-
ety of genetic models and breeding methods.

Information from these simulations of
the environment accommodates cropping-
system parameters (rotation, fertilizer, man-
agement, etc.) and allows us to define the
abiotic TPE for drought. It is difficult to accu-
rately simulate the biotic-stress components
of the TPE, even where we can quantify the
effect of a pest or disease on crop growth.
This is because the long-term population
dynamics and epidemics of pests are extrem-
ely difficult to parameterize. Hence, biotic
effects are not routinely accounted for in
cropping-system models. Alternative meth-
ods, such as the use of probe genotypes that
respond as a bioassay of the presence of
a biotic stress, are useful in this instance
(e.g. Cooper and Fox, 1996). The simulation
of environment and cropping-system effects
defines the ‘boundary conditions’ for the
geographical mandate of a breeding pro-
gramme. In variable environments, it also
defines the likelihood that plant breeders
will realize a representative sample of envi-
ronments from the TPE. Assuming that we
can define these, the next step is to be able
to exploit the available genes controlling the
traits that enable adaptation to the TPE.

Assessing the Value of Putative Traits
– Simulating the Gene and

Genotype Effects

Defining gene effects on crop growth

There are several major considerations
in simulating gene effects on crop growth.
What are the traits of interest and is there
genetic variation for them? Can we model
the gene effect at the scale at which we are
developing and operating the model? What
is the integrity of the model in the way
that its processes interact with each other?
Ideally, it will be a ‘self-correcting’ design
that allows the properties of the model
to be ‘emergent’ rather than programmed
explicitly.
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Muchow et al. (1991) and Hammer et al.
(1996a,b) experimented with a sorghum
model to try to establish the contribution to
yield of different traits, given the environ-
ments of the sorghum region in Australia.
They changed the model parameters associ-
ated with tillering, stay-green, maturity and
transpiration efficiency. While the model
could accommodate these effects, at the time
this was done, there was little information
about how much genetic variation existed
for these traits. Furthermore, they did not
know how many genes might be associated
with such traits. More recently, Chapman
et al. (2002a,b) have undertaken a similar
study, but they incorporated knowledge of
genes, QTL and trait variation based on
the results of experiments and molecular-
marker research conducted through the
1990s. The more recent work has also been
able to work with model parameters that
the authors believe are more closely aligned
with the traits of interest. In a similar
approach, White and Hoogenboom (1996)
included gene effects as part of the actual
parameterization of a model of bean phenol-
ogy. This took the form of the presence or
absence of a gene effect in regression equa-
tions that describe the contributions of the
genes to the rate of phenological develop-
ment stages. As the fitting equations in their
model were linear, this approach is essen-
tially the same as that used by Chapman
et al. (2002a,b).

Another way of defining gene effects
at the appropriate level within a model is
to conduct experiments to measure genetic
variation. For example, Yin et al. (1999b)
observed variation for yield-determining
physiological characters in spring barley.
These characters were input parameters in
their crop model, some of which were later
associated with QTL (Yin et al., 1999a).
They are at present attempting to predict
the variation in yield that arises from the
QTL associated with these different yield
parameters, i.e. if this is successful, they will
have presumably incorporated the effects
at an appropriate level. The key to this
approach is to find parameters that are
stable across environments – the so-called
genetic constant parameters, around which

the integrity of a model can be maintained.
Where the appropriate molecular-marker
mapping experiments are conducted, bio-
logists are beginning to obtain useful infor-
mation on yield-determining components of
plant growth.

It is generally considered unwise for
crop-simulation models to attempt to model
across more than one or two orders of scale
away from the basic scale at which they
operate (Sinclair and Seligman, 2000). For
example, in a model that operates on a daily
time step, with inputs of daily weather (max./
min. temperature, rainfall and radiation),
and models light interception at the canopy
level, one would not normally attempt to
incorporate a photosynthesis model of how
the chloroplasts work on a time-scale of
seconds. Such a ‘cellular’ level of modelling,
with data inputs every second, would be
entirely appropriate to examine how sun
flecks affect photosynthesis of small areas
of leaf, for example. However, it would
not be appropriate to then try to partition
the predicted sucrose production to various
parts of the crop as simple dry matter, as this
produces an internal conflict in the scales
used in the model. Hence, to examine gene
effects in a crop-simulation model, we have
to interpret the perceived or observed trait
expression at the cellular level in terms
of its expression at the crop level. Careful
field experiments involving an appropriate
crop-physiology framework are essential to
achieve this.

The example of gene effects on flower-
ing date (e.g. Koornneef et al., 1998) and
ideas from Thornley (1972) can be expanded
here. Assume that we have a gene that causes
the growing point to switch from vegetative
to reproductive after a period of time has
passed. As plants are poorly insulated from
the environment, passage of time is normally
better described in terms of thermal
time, rather than calendar time. This is
because biochemical rates of reaction tend
to increase within the range of ambient
temperature, causing a parallel increase in
development rate. The flowering gene may
switch on once sufficient thermal time
has passed for the accumulation of some
‘response’ compound or hormone to reach a
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level that initiates the switch. However, we
do not need to model the process at this or
the more complex gene-transcription level.
Based on field observations, gene action can
be registered as a difference in the ‘minimum
thermal time’ that must pass before floral
initiation can begin. In a later-flowering
genotype, this minimum is simply a larger
thermal time. The mechanism may well
be that the late-flowering genotype accumu-
lates the ‘response’ compound more slowly
or that the switch requires a greater amount
of ‘response’ compound before it cuts in.
To capture this mechanism, it is only neces-
sary to model the induction of the ‘gene
cascade’ that signals the change in state
of the meristem so that the simulation
model can then account for the changes in
other crop-level processes that arise from
this. Where major gene effects can be repre-
sented as integrated biochemical effects at a
daily time step, it is appropriate to include
them.

To reiterate an earlier point, in design-
ing models of crop growth and development,
modellers should be attempting to capture
rules that define the boundary conditions
for simulation processes, rather than apply-
ing a descriptive structure. This philos-
ophy of parameterization and modelling
of the principles of response and feedbacks
(cf. description of response) infers that
models should be able to express complex
behaviour of the type observed in the field,
even given simple operational rules at a
functional crop physiological level. The
sorghum-crop module (APSIM-Sorg) within
the APSIM cropping-system model (McCown
et al., 1996) contains several deliberate para-
meterizations to address genetic variation
using a ‘boundary-conditions’ approach
(Hammer et al., 1999). The central design
of the model aims to simulate genetic
variation in ‘signalling-type’ genes through
appropriate modification of the model
parameters.

In our work so far, we have focused on
four traits for which we have a relatively
good understanding of their crop physiology
and know that genetic variation exists.
These traits are:

• transpiration efficiency (TE), whereby
higher TE increases biomass produc-
tion potential when water is limiting
(Mortlock and Hammer, 1999);

• flowering date (phenology (PH)) as
influenced by thermal time require-
ment for floral initiation (Morgan and
Finlayson, 2000);

• osmotic adjustment (OA) and its posi-
tive effect on increasing grain number
and retranslocatable assimilate under
drought conditions (Hammer et al.,
1999);

• stay green (SG) as a function of the min-
imum target leaf N (Borrell et al., 2000).

For each trait, the observed genetic
variation was associated with a postulated
number of genes (n) (suggested from prior
experiments) and was divided into equal
size effects that equated with the number of
expression states (2n + 1) associated with
the trait, i.e. increased level of expression
for a particular trait was associated with a
greater number of positive (+ve) alleles for
that trait. The number of genes (expression
states) assigned to the traits, TE, PH, OA
and SG were 5 (11), 3 (7), 2 (5) and 5 (11),
respectively (Chapman et al., 2002a). With
the exception of OA, which only acted
under drought stress, all of the traits
were constitutive in action, although their
expression was dependent on the environ-
ment encountered in any particular situa-
tion (Table 12.1). The traits of high TE and
high OA were most advantageous in severe
terminal-stress environments, whereas high
values for PH and SG were of greater
importance in the mild terminal-stress
environment. As was apparent in Fig. 12.6,
late flowering was clearly a disadvantage in
the severe-stress environment.

Integrating Molecular Markers via
Biophysical Simulation

As related in this volume by Cooper
et al. (Chapter 11), the QU-GENE simulation
platform (Podlich and Cooper, 1998) simu-
lates the stochastic properties of genes,
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genotypes and environments in the opera-
tion of plant-breeding programmes. QU-GENE

has two components: the first defines the
gene-network–environment structure of the
population whereas the second consists of
a module (customized) to describe the sel-
ection strategy. QU-GENE can model breeding
programmes as ‘search-strategies that seek
higher peaks on the adaptation landscape
(genetic space) for a given genotype–
environment system’. The rate at which
a population improves with selection is
monitored by the change in grain yield of
successive cycles and in the changes in the
fixation (gene frequency) of both positive
and negative alleles related to this yield
improvement. Statistical analyses deter-
mine the effectiveness of searches in ‘creat-
ing and finding’ superior combinations
of alleles in the simulated populations.
These superior methods of recombination
and searching ‘genetic space’ can then be
considered for application in conventional
plant-breeding programmes (e.g. Podlich
and Cooper, 1998).

The interaction of gene effects with
each other and with the environment to
determine yield can be handled in two ways.
The method used in the original conception
of QU-GENE incorporates these effects based
on statistically derived or postulated rela-
tionships from experiments and published
knowledge about gene action. Another way
to account for effects is to try to simulate
the processes in Fig. 12.1, given some
knowledge of the variation in the effects of
each gene on several traits. This has been

attempted by linking the definition of gene
effects on traits (from QU-GENE) to APSIM. For a
single genotype, the effect of the genes on
traits and that of traits on grain yield then
become the result of their ‘integrated effects’
via the APSIM biophysical model, i.e. the
continuous interaction of soil and weather
on growth and yield (Fig. 12.1) are accom-
modated. This can be repeated for many
genotypes across many environments to
produce the adaptation landscape for
the sorghum TPE of a region (Chapman
et al., 2002a,b). In practice, the data set
was expanded to include ‘all genotypes’ in
a theoretical population of genotypes to
which QU-GENE can be applied to simulate
the breeding process.

An example of the APSIM-Sorg model
being used to accommodate genotypic
variation (minimum, average and maximum
expression states) for four traits is given in
Fig. 12.7. The thick line ranks the mean yield
of each of 54 genotypes when grown at six
locations (between central Queensland (CQ)
and northern New South Wales (NSW) in
Australia) and in 108 years. The lower line
shows their respective yields at six locations
for 2 years (1937 and 1938) when conditions
were relatively dry with the ratio of
4.5 : 5.5 : 0 of ‘severe terminal’ : ‘mid-
season’ : ‘mild terminal’ drought environ-
ments (as defined in Fig. 12.4). In the
following 2 years (1939 and 1940), the
weather was more favourable (ratio of 0 : 2 : 8
of the drought environment types) and the
yields were almost doubled, though with
greater variation among genotypes and a
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Drought-environment type

Trait Severe terminal Mid-season Mild terminal

TE
PH
OA
SG
Mean yield

−0.82
−0.32
−0.42
−0.10
−2.58

0.61
0.89
0.22
0.49
3.55

0.46
1.36
0.18
1.03
4.99

TE, transpiration efficiency; PH, phenology (flowering time); OA, osmotic adjustment; SG, stay green.

Table 12.1. From the data set of 4235 genotypes, the mean yield (t ha−1) within each of the three
drought-environment types and, for each drought-environment type and trait, the difference between the
mean of all genotypes containing the highest expression state for the trait and the mean of all genotypes
containing the lowest expression state for the trait (adapted from Chapman et al., 2002b).



poorer correlation with the long-term perfor-
mance. This data set is being used to interpret
how different traits interact with different
drought-environment types to influence
final yield (Chapman et al., 2002b).

The 54 genotypes were expanded to
4235 genotypes by incorporating all of
the trait-expression classes for the four
traits, utilizing the additive gene effects
for each expression state as described above
(Chapman et al., 2002b). Each genotype was
simulated in all six locations and 108 years
to produce an adaptation landscape of
gene–gene–environment interactions. We
averaged the responses within each of the
three drought-environment types described
in Fig. 12.4 to produce a table of yields for
every genotype in each environment. This
created an adaptation landscape for each
environment type on which to test different
plant-breeding strategies, although here we
consider selection only within the mild
terminal-stress environment.

Many different breeding strategies can
be tested on these landscapes. Briefly, Chap-
man et al. (2002a) set up QU-GENE to run an S1

recurrent-selection programme with 4 years
per cycle. It began with a sample of ten
parents from the 4235 genotype classes
available, such that the frequencies of each
of the 15 controlling genes (one of the alleles
for each gene) in the ten parents was 0.2.
The first 2 years were used to randomly

intermate the parents, select among 5000
spaced plants and produce 1000 S1 offspring
families. The S1s were ‘evaluated’ across
2 years in different drought environments –
in practice, by ‘looking up’ their yields in the
relevant table. The best 100 S1s (10% selec-
tion pressure) were then chosen to begin the
mating cycle again. To accommodate the
effects of variation in the process of choosing
parents, each breeding scenario was repeated
200 times to give the estimates of changes in
the yield of the S1 populations.

Chapman et al. (2002a) compared
phenotypic selection within each of the
environment types, as well as using a
random sample of environment types from
a population of environments structured at
the long-term TPE frequency. In this chapter,
we have compared, for the mild terminal
stress only, the phenotypic strategy with
one based on marker selection for all traits.
Flanking markers were associated with each
trait and examined, given different recom-
bination frequencies (RF) between markers
and genes (0, 0.05, 0.2, 0.5) in separate
runs. During selection, each S1 family was
assigned a marker score that was the sum of
the number of +ve alleles for trait expression
present across the 15 genes. Genes were
equally weighted, and the top 100 S1 fami-
lies were chosen for intermating. In compar-
ing the results, it was assumed that a cycle of
completely marker-assisted selection could
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Fig. 12.7. Mean grain yield of 54 simulated genotypes varying (upper, average and lower values) for
four traits (TE, PH, OA, SG) and simulated in six locations in 1937 and 1938, 1939 and 1940 or across
108 years.



be undertaken in 2 years rather than the
4 years taken for phenotype selection.

Figure 12.8 illustrates the change, with
cycle of selection, in gene frequency for each
trait in the selected fraction of S1 families.
Under phenotypic selection, the PH trait was
highly favoured, as later maturity was most
beneficial in this environment type, though
not in a severe terminal-stress environment
(Table 12.1). While positive alleles for all
traits were being fixed from the first cycle,
PH was fixed more quickly than SG, fol-
lowed by OA and TE, i.e. when their effects
were modulated by the gene–phenotype
relationships within a biophysical model,
the trait values for yield were quite diver-
gent. This is frequently the case in the practi-
cal world, but it is difficult to discern which
genetic components of the phenotype are or
are not contributing to yield improvement.
Under perfect marker selection (i.e. RF = 0)
(Fig. 12.8b), the traits were all fixed at
the same rate, and yield progress per cycle
was similar to, though a little slower than,
phenotypic selection (Fig. 12.9a). While
lower recombination frequencies limited
final yield (Fig. 12.9a), due to inability
to combine all of the favourable alleles

(Fig. 12.8c,d), progress was rapid in the first
two to three cycles of selection, i.e. even
relatively poor markers can be of assistance
when the frequencies of positive alleles are
low in a broad genetic base. In terms of yield
per year, even an RF of 0.2 allowed more
rapid progress than phenotypic selection in
the first 8 years or two cycles of phenotypic
selection.

This scenario compared only phenotypic
and complete marker selection. In future
experiments, we shall examine marker-
assisted selection for one or more traits
where molecular-marker and phenotypic
data are combined in a selection index.

Summary and Conclusions

In this chapter, we have discussed many of
the key aspects of a modelling framework
for linking gene effects to their effects on a
trait phenotype. Given the complexity of
plants as growing systems and while we
might one day understand the ‘function of
every plant gene’, it is unlikely that we can
build a model of sufficient detail for it to
be parameterized to capture the level of
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Fig. 12.8. For mild terminal stress, change with cycle of selection in the frequency of +ve alleles (see text)
in the selected fraction for four traits using: (a) phenotypic selection for yield or marker selection for three
recombination frequencies; (b) 0 (perfect markers); (c) 0.05 (closely linked markers); or (d) 0.20 (poorly
linked markers).



expression and effect of every gene. The
combinatorial nature of this problem sets
limits on our capacity to evaluate or even
simulate all possible genotypes. Instead, by
combining good experimentation on the
right sets of germ-plasm, it does seem possi-
ble that we can capture many of the compo-
nents that matter at the level of crop growth.
While increasing attention is being paid to
the gene technologies, the fact that we can
measure gene expression and product does
not necessarily mean that we can utilize
that information. The limits come about due
to limits in our current ability to model, as
well as limits in the input information to
run simulation models, e.g. technologies are
simply not precise enough to extrapolate

from satellite data to leaf temperatures at
the base of the canopy. As other sciences
are beginning to discover though, our major
limitation may well be the complexity
of the system with which we are working.
Utilizing a modular, structured modelling
approach allows the integration of new
effects and input information as they
become known. Though it will not contain
all of the possible genes that affect crop
growth, the modelling framework will allow
us to study complex biological networks
and to begin to determine the emergent
properties of the network that influence its
behaviour. The objective we have focused
on here is to be able to apply these interpre-
tations to improving the efficiency of plant
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Fig. 12.9. For mild terminal stress, change in yield of the selected fraction of S1 families for phenotypic
or three types of marker selection differing in linkage against (a) cycle or (b) year of selection.



breeding. Certainly, it will be exciting to
begin to understand the paradigm of genes
(rather than genotypes) interacting with
environments by utilizing these integrated
genetic and biophysical models.

The sciences of molecular biology
are beginning to reveal the role of the
10,000–40,000 genes in the biochemical
pathways of plants. While it may be possible
to eventually determine the ‘function’ of
each gene in single pathways, the complex
coordination of pathways will mask the
ultimate controls of crop yield for some
time. However, we can begin to integrate
several types of simulation models to gain
insights into how yield is determined by
selection among gene networks that com-
prise both known physiological-trait effects
and postulated stochastic effects.

The definition of ‘a quantitative herita-
ble trait or character’ is still a subject of much
debate in genetics. Ultimately, gene networks
control traits, and so knowledge of single
gene action in a biochemical pathway is
likely to be of limited use in understanding
crop adaptation to environments. When
applied to suitable genetic populations,
crop physiology (‘forward physiology’ when
compared with the reductionist ‘gene-to-
pathway’ molecular physiology) can reveal
conservative, yield-determining parameters
(traits) to incorporate in biophysical simu-
lation models. These models have a
framework of realistic data description and
environment-input requirements, e.g. time
steps of days rather than seconds or minutes.
A genetic model can be used to specify the
actions and interactions of genes that deter-
mine the value of individual traits. In turn,
when these combinations of trait values are
input to the crop model, the effects interact
with the environment to generate an ‘adapta-
tion landscape’ of fitness or performance
phenotype (e.g. yield) for all possible gene/
trait networks (genotypes). Thus, the land-
scape contains the pleiotropic and gene–
environment effects associated with the
specified gene networks. This complex
landscape of biological gene–environment
networks can be characterized for its
emergent properties and then sampled
and searched to identify superior strategies

(breeding methods) to locate genotypes
containing superior allelic combinations.

Three areas in which biophysical
models can assess in silico the multitude of
options to improve the efficiency of plant
breeding are: (i) characterizing environments
to define the TPE; (ii) assessing the value of
specific putative traits in improved plant
types; and (iii) enhancing the integration
of molecular genetic technologies. In this
chapter, we demonstrate examples of each of
these, following an initial consideration of
how to integrate the gene–phenotype effects
of traits that are associated with adaptation
to the physical environment. It points to
research areas where molecular biology can
contribute information on the genetic varia-
tion for traits that control the physiology
of yield. As knowledge improves, there is
the opportunity to connect these traits more
directly to gene action via models of bio-
chemical pathways.
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13 Tissue Culture for Crop Improvement
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The use of plant cell-, tissue- or organ-
culture techniques for crop improvement
has many facets. Some techniques are quite
simple, requiring minimal laboratory facili-
ties and expertise, whereas others are more
complex and require extensive training
and equipment and a multidisciplinary
approach. The variety of tissue-culture
techniques for crop improvement include
the following:

• Micropropagation.
• Basic studies of plant morphogenesis.
• Virus-free plants from shoot-apex

culture.
• Germ-plasm preservation and transport.
• Androgenesis/gynogenesis for haploid

and dihaploid plants.
• Embryo rescue for unique hybrids.
• Cell selection and somaclonal variation

for unique germ-plasm.
• Protoplast fusion for somatic hybrids.
• Plant genetic engineering to add unique

foreign genes to enhance agronomic
characteristics.

• Molecular farming.

The terms plant genetic engineering
and plant biotechnology are used inter-
changeably, and a component of plant
biotechnology uses plant-tissue culture and
molecular genetics to produce plants with
foreign or new genes. Each of these areas
provides the plant breeder with unique tools

to enhance the conventional process of crop
improvement.

In Vitro Clonal Propagation

Micropropagation or clonal propagation is
the most widely used tool of plant cell
culture because one can clonally propagate
a very large number of uniform copies of a
selected parent plant in a short period of
time (Morel, 1972; Murashige, 1974). This
technique is widely used in the ornamental
and floriculture industry. Additionally,
unique forest/plantation trees, vegetable
crops, etc. can also be mass-produced by
this method, if it is cost-effective for that
particular plant. The technique generally
involves isolating a shoot tip or lateral bud
that contains a shoot meristem and putting
it on a nutrient medium with plant growth
regulators to encourage multiple shoots or
enhanced axillary branching. Other explants,
such as fern runner tips, petiole, stem, floral
scapes, leaf sections, etc., also work as long
as the cell-culture process involves the
direct production of adventitious shoots or
somatic embryos from these tissues without
a callus intermediate. Any explant that forms
callus before adventitious shoot or embryos
can result in plants that can be different in
phenotype from the parent plant, and this is
usually undesirable in propagation.
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Basic Studies of Plant Morphogenesis

The basic principles of recovering whole
rooted plants from cell culture are central to
nearly all the other techniques using plant
tissue culture for crop improvement. The
extensive commercial use of micropropaga-
tion has relied on many very fundamental
studies of plant morphogenesis. The basic
studies on plant growth regulators, nutrient
media, cell growth conditions, explants,
etc., which had their origins in the early
studies of Haberlandt, Hannig, Kotte,
White, Loo, Ball, Gautheret, Nobecourt, Van
Overbeek, Skoog, Miller, Morel, Murashige
and so many others (for reviews, see
Krikorian and Berquam, 1969; Thorpe,
2000), established the foundation for
micropropagation. These studies on basic
aspects of cell culture and morphogenesis
set the stage for the extensive application
of these findings to micropropagation and
using cell culture to recover virus-free
plants. They also laid the foundation for all
the useful techniques in plant cell culture
as applied to crop improvement.

Virus-free Plants

Many vegetatively propagated plants, such
as potato, garlic, pineapple, orchids, carna-
tion, banana, citrus and strawberry, are
viral-infected and the virus is further spread
by vegetative propagation (Quak, 1977).
Many of these plants have multiple viral
infections, such as strawberry, with up to 62
viruses and mycoplasms that can infect it
(Thorpe and Harry, 1997). Viral contamina-
tion by one or more viruses causes many
symptoms, including the following:

• Reduced vigor and growth.
• Low yield.
• Necrosis.
• Off colours in the flowers.
• Curling and variegated colour of the

leaf blade.
• Decreased rooting of cuttings.
• Plant death.

There are no effective chemical treat-
ments to free plants from viruses. A

significant milestone in the use of plant
cell culture for ornamental, floriculture and
crop plant improvement was the discovery
by Morel and Martin (1952) that virus-free
tissue in the shoot apex could be isolated
and cultured in vitro into plants that were
virus-free. This was quite a powerful tool
for plant improvement programmes that was
not fully utilized on a wide number of plants
until the mid-1960s (Smith and Murashige,
1970). Many crop plants now routinely go
through in vitro virus clean-up programmes
usually combined with thermotherapy. An
additional benefit of this process is the elim-
ination of fungal and bacterial contaminants
as well. This clean plant material is ideal for
germ-plasm storage, as well as international
transport.

Germ-plasm Preservation

The use of cell culture for germ-plasm pres-
ervation and transport is a very convenient
technique. It is used in varying degrees
by many germ-plasm repositories, biotech-
nology companies, commercial propagation
laboratories and academic research labora-
tories. The preservation of wild or diverse
population germ-plasm or cultivated crops,
especially those that are vegetatively
propagated, is a valuable tool for crop
improvement (Pauls, 1995). Preservation of
germ-plasm is even more critical today
with the rapid destruction of habitat and
the need to preserve the genetic pool. This
technique reduces the labour involved in
maintaining plant lines and also minimizes
losing the plant material to disease. Plant
material can be cold-stored to allow only
minimal growth, cryopreserved in liquid
nitrogen in the form of shoot tips, somatic
embryos and callus and then used as
needed (Withers, 1987), or grown with
growth-retarding chemicals in the medium
to decrease transfer frequency (Thorpe and
Harry, 1997). This can minimize maintain-
ing stock plants in the greenhouse or under
normal in vitro conditions that require
frequent maintenance. Some germ-plasm
collection agencies are able to put shoot-tip
or lateral-bud material from vegetatively
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propagated plants out in the field into cell
culture and transport the cultures back to
the main storage facility, eliminating the
transport of large whole-plant material.
Additionally, since most in vitro plant
material is free of microbe or insect contam-
ination and can be, if necessary, certified
virus-free, the international transport and
exchange of germ-plasm through quarantine
facilities is facilitated.

Somaclonal Variation

An important aspect of conventional breed-
ing is creating genetically diverse popu-
lations via crossing. Plant tissue-culture
techniques, such as somaclonal variation,
cell selection, protoplast fusion, embryo
rescue and dihaploids via anther culture,
can enhance the ability of the plant breeder
to obtain unique diversity.

Somaclonal variation was a term coined
by Larkin and Scowcroft (1981) to designate
the plants from cell culture that were dif-
ferent from the original starting material.
In most cases, this was a result of explants
producing callus prior to undergoing regen-
eration via organogenesis (shoot production)
or somatic embryogenesis (bipolar embryo
production from somatic tissues). It was
believed that somaclonal variation would
be a unique tool for the plant breeder that
would reduce the time it took for con-
ventional variety development and open up
access to new sources of genetic variation
(Evans et al., 1984). The variation obtained
from tissue culture increased with increased
length in culture of the callus before regener-
ation occurred. It is possible to generate new
varieties using this approach; however, in
most cases the usefulness of this approach
has been limited. Very few of these variants
were stable and usable in plant-improve-
ment programmes, or the plants had other
undesirable agronomic traits. The overall
use of somaclonal variants has not played
a major role in most plant-improvement
programmes (Smith et al., 1993; Karp, 1995;
Veilleux and Johnson, 1998). Intense inter-
est in and publication of studies on
somaclonal variation and its potential

appear to have peaked in 1991 and 1992. The
generation of somaclonal variation, how-
ever, is very easy to accomplish with mini-
mal facilities and is often a component of
plant-breeding programmes, initially getting
started using plant cell-culture approaches
in crop improvement.

Cell Selection

Similar observations to those for soma-
clonal variation were made for using cell
selection to generate unique germ-plasm.
Cells in culture were exposed to selective
stresses, such as temperature, salts (e.g.
sodium or aluminium), plant toxins, amino
acid analogues, etc. (Chaleff, 1983). Cells
that survived the selection in vitro were then
regenerated into plants, and the plants and
their progeny were evaluated to see if the
cellular level selection would be expressed
at the whole-plant level. McHughen (1987)
generated salt tolerance in flax (Linum
usitatissimum L.) from a cell line selected
in vitro for salt tolerance, and a cultivar,
‘Andro’, was released and commercially used.
Other successes have been reported (Smith
et al., 1993); however, in general, consider-
ing the level of funding and research effort,
little has come out of these strategies.

Androgenesis/Gynogenesis

A useful cell-culture method for obtaining
homozygous diploid or haploid plants is
anther or microspore culture (Reinert and
Bajaj, 1977; Chu, 1982). The ability of cul-
tured anthers to produce haploid plants was
first demonstrated by Guha and Mahesh-
wari (1964a,b). They cultured Datura innoxia
anthers and obtained haploid plants. Since
this early discovery, plant-breeding program-
mes have found this technique effective
for obtaining homozygous plants. Plant-
breeding programmes have traditionally
used back-crossing to obtain homozygosity
in parent lines. Anther culture can reduce
the time required to generate homozygosity.
Culturing the immature pollen, either
within the anther or isolated from the
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anther, can produce haploid or homozygous
diploid plants. Haploid plants can be
doubled either spontaneously or using
colchicine treatments. This tool has been
effectively used in barley (Hordeum vulgare
L.), wheat (Triticum aestivum L.), tobacco
(Nicotiana tabaccum L.), rice (Oryza sativa
L.) and rapeseed (Brassica sp.) breeding
programmes (Morrison and Evans, 1988).

Dr Clint MaGill at Texas A&M Univer-
sity released a new rice cultivar using
anther culture to reduce the selection time
(unpublished). Two rice parent lines were
crossed, one that matured very early and
another that was a semidwarf with high
yields. The anthers of the F1 progeny were
cultured and doubled. This progeny was
selected for early maturity, high yield, grain
quality and semidwarfness. A new cultivar,
‘Texmont’, came out of this programme
in only 5 years, clearly demonstrating the
usefulness of this approach.

Gynogenesis, achieved by culturing
immature unpollinated flowers or isolated
ovaries or ovules, will also result in haploid
plant material (Muren, 1989; Geoffriau et al.,
1997). This approach has been successfully
used as a practical approach for accelerated
inbred line development in onion (Allium
cepa L.). Some of these haploids spontane-
ously double (Geoffriau et al., 1997).

Protoplasts

A novel cell-culture technique that gener-
ated tremendous excitement in the 1960s
was that of fusing protoplasts to create
unique somatic hybrid cells. Protoplasts are
plant cells that have been enzymatically
digested in cellulase and pectinase to
remove the rigid cell wall, leaving a
fragile, spherical cell surrounded by the
plasma membrane (Cocking, 1960). Kao and
Michayluk (1974) showed that polyethyl-
ene glycol (PEG) could fuse protoplasts,
creating hybrid cells. Later, Power et al.
(1980) reported fusion of sexually incom-
patible petunia species. Melchers et al.
(1978) demonstrated the fusion of potato
and tomato protoplasts, producing hybrid
potato/tomato plants. Zimmerman and

Scheurich (1981) reported a new technique
to fuse protoplasts using electrical pulses.
Many other reports followed and created an
intense interest in this novel way of creating
unique hybrid plants.

A further refinement was cybrid pro-
duction, where the intact protoplast of
one parent was fused with a protoplast of
another parent whose nucleus was removed
by  centrifugation  or  inactivated  by  X-ray
irradiation, so that the resulting fusion
product had the nuclear genome of one
parent and a cytoplasm with a mixture of
both parents. This was mainly focused on
developing new cytoplasmic male-sterility
systems (Zelcer et al., 1978).

Although numerous fusion hybrids
have been produced, mainly in the Solan-
aceae family, protoplast-fusion technology
has had limited application. It is difficult to
regenerate fusion products and the plants
are generally abnormal. Resulting plants
have genetic instability, cytoplasmic segre-
gation and variation. With the development
of more efficient techniques for generating
germ-plasm diversity, such as genetic engi-
neering, protoplast-fusion approaches do not
have widespread application. The ability to
transfer identified genetic traits and not vary
other desirable agronomic traits has received
more attention.

Plant Transformation

A major revolution in crop plants and agri-
culture has been the recent increasing com-
mercialization of transgenic crop plants.
Of all the tools of plant cell culture for
crop improvement, this has had by far the
greatest impact for agricultural crops. This
revolution,  however,  has  been  developed
on the tremendous foundation of informa-
tion established from the development and
use of all the above technologies that have
been discussed.

In 1997, 48 transgenic crops were
approved for commercialization (Hansen
and Wright, 1999). The increase in the use of
transgenic crops has been significant – from
4 million acres in 1995 to 100 million acres
in 1999 (Krattinger, 2000). The growth has
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been due to the economic advantage to
the farmer in reduced pesticide application,
higher yields and lower consumer prices
(Krattinger, 2000). These genetically modi-
fied organisms (GMOs), as they are often
referred to, contain genes for herbicide,
insect and disease resistance, enhanced
nutritional value and environmental-stress
resistance. Although there are several tech-
niques used to insert the foreign genes
into the plant cell, all methodologies
rely on plant-tissue culture to recover the
modified plant. Having a rapid, genotype-
independent regeneration protocol for plant
regeneration is important for the application
of transgene technology. There are several
approaches to inserting foreign DNA into
plant cells. The decision about which
approach to take is determined by the target
tissue appropriate for regeneration, an effec-
tive vector for DNA delivery, an efficient in
vitro selection system to identify transgenic
cells, transgenic plant recovery at a reason-
able frequency and a short in vitro stage
to avoid somaclonal variation (Hansen and
Wright, 1999).

The earliest-developed transformation
technique involved using protoplasts and
inducing foreign DNA or gene uptake by PEG
or electroporation (Cocking, 1977; Fromm
et al., 1986; Rhodes et al., 1988; Datta et al.,
1990) or Agrobacterium-mediated uptake
(Horsch et al., 1984). However, again, the
major obstacle was regenerating plants from
the engineered protoplast. The efficiency
and frequencies were very low and required
major efforts to obtain normal plants with
stable, single-gene-copy insertions.

Microprojectile bombardment or biol-
istics was a unique approach to inserting for-
eign genes into plant tissues without using
protoplasts, and the added advantage was
that any cultivar, monocotyledon or dicoty-
ledon tissue could serve as the target tissue,
as long as the target cell could regenerate
into a fertile plant (Klein et al., 1988). This
method involves making the foreign DNA
adhere to the surface of small micropro-
jectiles – gold or tungsten particles – and
shooting these into plant cells. The cells can
take up the DNA and incorporate it into their

genomic DNA at a low frequency. Multiple
gene copies and fragments of genes are
randomly inserted.

Probably the most widely used method
for inserting foreign genes into plants
involves using Agrobacterium tumefaciens
to vector the foreign DNA into the plant cell
(Chilton et al., 1977; Smith and Hood, 1995).
Agrobacterium tumefaciens is attracted to
and attaches to wounded plant cells and
transfers a piece of its Ti plasmid or T-DNA
into the plant cell (Zambryski, 1992). Early
work by Fraley et al. (1984) and Horsch et al.
(1985) established an elegant system using
Agrobacterium to transform plant tissues.
Soon, there were numerous reports of trans-
genic plants. However, transformation of
monocotyledons using Agrobacterium was
not believed to be possible, as Agrobacter-
ium did not appear to infect monocotyle-
dons and cause tumours (Smith and Hood,
1995). Until it was unequivocally demon-
strated by Chan et al. (1993), Hiei et al.
(1994) and Park et al. (1996) that A. tume-
faciens could transform monocotyledon
plants, protoplast genetic engineering and
biolistics were the main avenue for inserting
agronomically important genes into cereal
crops. Overall, the Agrobacterium system is
probably the most widely used. It is the most
efficient system of delivering foreign genes,
gives a high frequency for single-gene-copy
insertion with minimal gene rearrangement,
and requires minimal equipment and
facilities.

Improvements in transformation tech-
nology that could have a significant impact
have been recently publicized. A press
release by Delta and Pine Land Company
described an agreement with the US Depart-
ment of Agriculture (USDA)’s Agricultural
Research Service (ARS) regarding the ARS
pollen transformation system (PTS) (USDA
patent issued in July 1999). The PTS
involves inserting a gene into cultured
pollen and using the transformed pollen
to pollinate a flower. Transgenic seed is
obtained from the plant carrying the new
genetic trait. This system may make trans-
formation technology much easier and more
economical.
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Molecular Farming

One of the newest and most exciting appli-
cations of genetic engineering is molecular
farming or using crop plants as a factory to
produce unique proteins, ranging from anti-
biotics, pharmaceuticals and speciality pro-
teins for industrial use to edible vaccines
(May et al., 1995; Yusibov et al., 1997). The
concept is attractive: for example, in the
case of maize (Zea mays L.), a protein accu-
mulated in seed can be stored in the maize
seed and processed using conventional
methods already established for maize,
making scale-up easy and the process
cost-effective. ProdiGene is a company
in Texas using this approach to produce
speciality proteins in transgenic maize.

There are many concerns regarding the
use of genetically engineered crops. These
concerns include the following:

• The possibility that the foreign genes
will escape into the environment. The
concern is that superweeds may
develop or, with the transfer of virus
resistance, this could cause more viru-
lent virus strains. Also gene transfer
could result in contamination of non-
genetically modified crops, threatening
crop diversity.

• The use of antibiotic genes for select-
able markers might increase the
number of microbes with antibiotic
resistance.

• Food-safety issues, such as the foreign
protein produced in plants causing
food allergies.

• Ownership and proprietary rights of
the germ-plasm are a contentious issue.
Some feel that there is an element of
bio-piracy by more developed coun-
tries and biotechnology companies.
Farmers in some countries feel that the
big biotechnology companies may take
advantage of them.

• Environmental damage, such as insect-
resistant crops harming non-target
species. The monarch butterfly issue
ignited concern that the Bacillus
thuringiensis (Bt) maize pollen could
kill the butterflies. Also, insects can

develop resistance to Bt if it is out in
the farmers’ fields on a large scale, and
this could lead to the use of harsher
chemicals.

• Ethical issues of patenting life forms
concern many individuals.

All of these concerns are currently being
debated. The use of this technology to
enhance food production could make it
possible to produce more food on the
current agricultural acreage. The debate
over the widespread use of this technology
is still under discussion.

Summary

None of these techniques of cell culture/
plant biotechnology can attain their poten-
tial unless tightly linked to conventional
plant-breeding and crop-production pro-
grammes. It is only with the cooperation
and input of conventional breeding pro-
grammes that appropriate problems and
goals can be identified and undertaken for
a particular crop. Once a plant product is
derived from the cell culture, it must move
into field-testing and evaluation for appro-
priate genotype selection and stabilization,
testing, increase, proprietary protection and
crop-production stages (Smith et al., 1993;
Pauls, 1995). Working together, the plant
physiologist, plant virologist, plant molecu-
lar biologist and plant breeder have the
potential to produce high-quality food on
limited acreage for the expanding human
population. However, this alone is not the
solution to world hunger. Political stability,
reduction in poverty, increases in literacy
and education, population stabilization and
agricultural sustainability are all major com-
ponents in human survival in a civilized
world.
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14 Transferring Genes from Wild
Species into Rice

D.S. Brar and G.S. Khush
International Rice Research Institute, DAPO 7777, Metro Manila, The Philippines

Three cereal crops – rice, wheat and maize
– feed the world. These crops supply 49%
of the calories consumed by the world
population; 23% come from rice, 17% from
wheat and 9% from maize. Rice is the
primary food source for more than a third
of the world’s population. It is planted on
almost 150 million ha annually or 11% of
the world’s cultivated land. More than 90%
of rice is produced and consumed in Asia.
It is also an important staple in Latin
America, Africa and the Middle East. Rice is
grown under a wide range of agroclimatic
conditions. Four major ecosystems are gen-
erally recognized: irrigated (55%), rain-fed
lowland (25%), upland (12%) and flood-
prone (8%).

World rice production has more than
doubled, from 257 million t in 1966 to 600
million t in 2000. To meet the growing needs
of the ever-increasing human population,
however, rice production must increase by
40% during the next 25 years. To achieve
this, several biotic and abiotic stresses that
adversely affect rice productivity must be
overcome. Some of the major diseases and
pests affecting rice production include
bacterial blight, blast, sheath blight, tungro
virus diseases and rice yellow mottle virus
(RYMV) and insects, such as the brown
planthopper (BPH), stemborer and Asian
and African gall midge. Similarly, abiotic
stresses, such as drought, cold, salinity,

acidity, iron toxicity and submergence
under water (flooding tolerance), adversely
affect rice production. Changes in insect bio-
types and disease races are a continuing
threat to rice production. The genetic vari-
ability for some traits, such as resistance
to sheath blight, tungro, RYMV and yellow
stemborer and tolerance to salinity and
acid sulphate conditions, is limited in the
cultivated germplasm. There is thus an
urgent need to broaden the rice gene pool
by introgression of new genes from diverse
sources to meet various challenges affecting
rice production. Wild species of Oryza are
an important reservoir of useful genes for
rice improvement (Table 14.1).

Wild Relatives of Rice

Rice belongs to the family Poaceae
(Gramineae), tribe Oryzeae. This tribe has
11 genera, of which Oryza is the only
one with cultivated species. Oryza has two
cultivated and 22 wild species. Of the two
cultivated species, Oryza sativa (2n = 24
AA), the Asian rice, is grown worldwide,
but Oryza glaberrima (2n = 24 AA), the
African rice, is cultivated on a limited scale
in West Africa. The wild species have either
2n = 24 or 48 chromosomes, representing
AA, BB, CC, BBCC, CCDD, EE, FF, GG,
and HHJJ genomes (Table 14.1). Another
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Species 2n Genome
Number of

accessions* Distribution Useful or potentially useful traits

O. sativa complex
O. sativa L.
O. glaberrima Steud.

O. nivara Sharma et Shastry
O. rufipogon Griff.

O. breviligulata A. Chev. et Roehr.
(O. barthii)

O. longistaminata A. Chev. et Roehr.
O. meridionalis Ng
O glumaepatula Steud.

24
24

24
24

24

24
24
24

AA
AgAg

AA
AA

AgAg

AlAl

AmAm

AgpAgp

84,186
1,299

1,130
84,858

84,214

84,203
84,246
84,254

Worldwide
West Africa

Tropical and subtropical Asia
Tropical and subtropical Asia,

tropical Australia
Africa

Africa
Tropical Australia
South and Central America

Cultigen
Cultigen, tolerance to drought, acidity and iron

toxicity, resistance to RYMV, African gall
midge, nematodes and weed competitiveness

Resistance to grassy stunt virus
Resistance to BB, tungro virus, tolerance to

aluminium and soil acidity, source of CMS
Resistance to GLH, BB, drought avoidance

Resistance to BB, nematodes, drought avoidance
Elongation ability, drought avoidance
Elongation ability, source of CMS

O. officinalis complex
O. punctata Kotschy ex Steud.
O. minuta J.S. Presl. ex C.B. Presl.

O. officinalis Wall ex Watt

O. rhizomatis Vaughan
O. eichingeri A. Peter
O. latifolia Desv.
O. alta Swallen

O. grandiglumis (Doell) Prod.
O. australiensis Domin.

24, 48
48

24

24
24
48
48

48
24

BB, BBCC
BBCC

CC

CC
CC
CCDD
CCDD

CCDD
EE

84,259
84,263

84,265

84,219
84,229
84,240
84,246

84,210
84,236

Africa
Philippines and Papua New

Guinea
Tropical and subtropical Asia,

tropical Australia
Sri Lanka
South Asia and East Africa
South and Central America
South and Central America

South and Central America
Tropical Australia

Resistance to BPH, zigzag leafhopper
Resistance to BB, blast, BPH, GLH, tolerant to

Shb
Resistance to thrips, BPH, GLH, WBPH, BB,

stem rot
Drought avoidance, rhizomatous
Resistance to BPH, WBPH, GLH
Resistance to BPH, high biomass production
Resistance to striped stemborer, high biomass

production
High biomass production
Resistance to BPH, BB, drought avoidance

Table 14.1. Chromosome number, genomic composition and potential useful traits of Oryza species.
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O. meyeriana complex
O. granulata Nees et Arn. ex Watt
O. meyeriana (Zoll. et (Mor. ex

Steud.) Baill.

24
24

GG
GG

84,224
84,211

South and South-East Asia
South-East Asia

Shade tolerance, adaptation to aerobic soil
Shade tolerance, adaptation to aerobic soil

O. ridleyi complex
O. longiglumis Jansen

O. ridleyi Hook. F.

48

48

HHJJ

HHJJ

84,246

84,215

Irian Jaya, Indonesia and
Papua New Guinea

South Asia

Resistance to blast, BB

Resistance to BB, blast, stemborer, whorl maggot

Unclassified
O. brachyantha A. Chev. et Roehr.

O. schlechteri Pilger

24

48

FF

HHKK

84,219

84,241

Africa

Papua New Guinea

Resistance to BB, yellow stemborer, leaf-folder,
whorl maggot, tolerance to laterite soil

Stoloniferous

Related genera 84,215 – –

*Accessions maintained at IRRI, The Philippines.
BPH, brown planthopper; GLH, green leafhopper; WBPH, white-backed planthopper; BB, bacterial blight; Shb, sheath blight; CMS, cytoplasmic male sterility;
RYMV, rice yellow mottle virus.



tetraploid species, Porteresia coarctata,
now classified as Oryza coarctata, has
HHKK genome.

The genus Oryza has been divided
into four species complexes: (i) the Sativa
complex; (ii) the Officinalis complex; (iii)
the Meyeriana complex; and (iv) the Ridleyi
complex (Table 14.1). Two species, Oryza
brachyantha and Oryza schlechteri, cannot
be placed in any of these groups (Vaughan,
1989).

Sativa complex

This complex consists of two cultivated
species and six wild taxa. All of them have
the AA genome and form the primary gene
pool for rice improvement. Wild species
closely related to O. sativa have been vari-
ously named. The weedy types of rice have
been given various names, such as ‘fatua’
and ‘spontanea’ in Asia and Oryza stapfii
in Africa. These weedy forms usually have
red endosperm – hence the common name
‘red rice’. These weedy species may be
more closely related to Oryza rufipogon
and Oryza nivara in Asia and to Oryza
longistaminata or Oryza breviligulata in
Africa. One of the species, Oryza meridion-
alis, is distributed across tropical Australia.
This species is often sympatric with Oryza
australiensis in Australia.

Officinalis complex

The Officinalis complex consists of nine
species and is also called the Oryza latifolia
complex (Tateoka, 1962). This complex has
related species groups in Asia, Africa and
Latin America. The tetraploid species Oryza
minuta is sympatric with Oryza officinalis
in the central islands of Bohol and Leyte
in The Philippines. Oryza rhizomatis is a
new species from Sri Lanka. Another spe-
cies, Oryza eichingeri, grows in forest shade
in Uganda. It was found distributed in Sri
Lanka (Vaughan, 1989). Two species of this
complex, Oryza punctata and O. eichingeri,
are distributed in Africa. Three American
species of this complex, O. latifolia, Oryza

alta and Oryza grandiglumis, are tetraploid.
Oryza latifolia is widely distributed in
Central and South America, as well as in
the Caribbean islands. A diploid species, O.
australiensis, occurs in northern Australia
in isolated populations.

Meyeriana complex

This complex has two diploid species, Oryza
granulata and Oryza meyeriana. Oryza
granulata grows in South Asia, South-East
Asia and south-west China. Oryza
meyeriana is found in South-East Asia.
Another species, Oryza indandamanica
from the Andaman Islands (India), is a sub-
species of O. granulata. The species of this
complex have unbranched panicles with
small spikelets.

Ridleyi complex

This complex has two tetraploid species,
Oryza ridleyi and Oryza longiglumis. Both
species usually grow in shaded habitats,
near rivers, streams or pools. Oryza longi-
glumis is found along the Koembe River,
Irian Jaya, Indonesia, and in Papua New
Guinea. Oryza ridleyi grows across South-
East Asia and as far as Papua New Guinea.

Oryza brachyantha

This species is distributed in the African
continent. It grows in the Sahel zone and in
East Africa, often in laterite soils. It is often
sympatric with O. longistaminata.

Oryza schlechteri

This is the least studied species of the
genus. It was collected from north-east
New Guinea. It is a tufted perennial, with
4–5 cm panicles and small, unawned spike-
lets. It is tetraploid, but its relationship to
other species is unknown. Besides Oryza,
the tribe Oryzeae has ten other genera:
Chikusiochloa, Hygroryza, Leersia, Luziola,
Prosphytochloa, Rhynchoryza, Zizania,
Zizaniopsis, Porteresia and Potamophila.
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Genomic relationships

Various approaches involving morpho-
logical differentiation, meiotic chromosome
pairing in F1 hybrids, molecular divergence
analysis and fraction 1 protein have been
used in determining genome relationships
in Oryza. On the basis of chromosome pair-
ing in F1 hybrids, various authors have
assigned the genome symbol AA for the
Sativa complex, BB, CC, BBCC, CCDD and
EE for the officinalis complex and FF for O.
brachyantha (Table 14.1). Based on molecu-
lar divergence analysis, two new genomes
GG and HHJJ have been assigned to the
O. meyeriana and O. ridleyi complexes,
respectively (Aggarwal et al., 1997, 1999).
Similarly, total genomic hybridization anal-
ysis also showed that O. schlechteri had
a distinct genome (Aggarwal et al., 1996).
Hybridization of the total genomic DNA
of P. coarctata when used as a probe with
the DNA of the F1 hybrid (O. sativa × P.
coarctata) shows strong hybridization with
P. coarctata and limited cross-hybridization
with O. sativa, indicating strong divergence
between the genomes of O. sativa and P.
coarctata (Brar et al., 1997). Ge et al. (1999),
on the basis of sequence analysis of nuclear
genes (Adh1, Adh2) and a chloroplast gene
(matK), proposed the HHKK genome for
O. schlechteri and P. coarctata, which
further suggested that P. coarctata should
be treated as an Oryza species.

Results of restriction fragment length
polymorphism (RFLP), amplified fragment
length polymorphism (AFLP), sequence
analysis of genes and seed-protein analysis
support the genome classification based
on morphological and cytological data
(Table 14.1). Jena et al. (1994) constructed
a comparative RFLP map of O. sativa (AA)
and O. officinalis (CC). The linkage order
of mapped RFLP loci on different chromo-
somes of O. officinalis was mostly conserved
relative to cultivated rice, but some rear-
rangements were detected. Nine of the 12
chromosomes of O. officinalis were homo-
sequential to those of O. sativa. Kennard
et al. (1999) developed comparative maps
of wild rice (Zizania palustris 2n = 2x = 30)

and O. sativa (2n = 2x = 24). Although, the
genomes of the two species differ in total
DNA content, collinear markers were found
for all the rice linkage groups except number
12.

Useful traits of Oryza species

Wild species are an important reservoir of
useful genes for resistance to major diseases
and insects and tolerance to abiotic stresses
and are also a good source of cytoplasmic
male sterility (Table 14.1). Many AA
genome species that are closely related to
cultivated rice species possess genes for
resistance to diseases, such as bacterial
blight, blast, tungro, RYMV and stem rot,
and to insects, such as BPH and gall midge,
and tolerance to abiotic stresses, such as
drought, iron and aluminium toxicity, acid-
ity, etc. Similarly, many distantly related
species also possess useful genes for rice
improvement. Several incompatibility bar-
riers, such as low crossability and limited
recombination between chromosomes of
wild and cultivated species, however,
limit the transfer of useful genes (Brar
and Khush, 1986, 1997; Sitch, 1990; Khush
and Brar, 1992). Recent advances in tissue
culture, such as embryo rescue, in vitro
pollination and protoplast fusion, and
anther culture have enabled the production
of wide hybrids among distantly related
species. In addition, molecular marker tech-
nology and in situ hybridization techniques
have made it possible to precisely detect
the introgression of chromosome segments
from wild into cultivated species.

Alien Introgression in Rice

The main objectives are: (i) to widen the
gene pool of rice by transferring useful
genes for resistance to major diseases and
insects and tolerance to abiotic stresses; (ii)
to enhance the grain yield of rice through
introgression of useful alleles of wild rela-
tives; and (iii) to precisely determine the
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mechanism of alien gene transfer, with the
possibility of enhancing introgression from
distant genomes.

Some of the steps followed for transfer-
ring genes from wild species into rice are
given below:

1. Identification of useful genetic variabil-
ity in the wild-species germplasm for target
agronomic traits.
2. Production of hybrids between élite
breeding lines of rice and wild species
through direct crosses and/or through
embryo rescue.
3. Continued back-crossing with the
recurrent rice parent followed by embryo
rescue to produce fertile introgression lines
(2n = 24).
4. Evaluation of advanced fertile back-
cross progenies (introgression lines) for
transfer of target traits from wild species
under screenhouse and field conditions.
5. Characterization of alien introgression
using isozyme and molecular markers.
6. Chromosomal location of introgressed
gene(s) using monosomic alien addition
lines (MAALs).

7. Tagging of introgressed alien genes with
molecular markers for use in marker-
assisted selection.
8. Location of introgressed alien segments
on rice chromosomes through fluorescence
in situ hybridization (FISH).

Production of interspecific hybrids and
advanced back-cross (introgression) progenies

Hybrids between rice and wild species of
Oryza have been produced through direct
crosses and/or through embryo rescue
(Table 14.2). Cultivated rice and its closely
related wild species, Oryza perennis, O.
nivara, O. glaberrima and O. longistamin-
ata, share the AA genome. These wild
species can be easily crossed with O. sativa
and genes from them can be transferred
to cultivated rice by conventional crossing
and back-crossing procedures. Wild species
with genomes other than AA are, however,
difficult to cross with O. sativa and produce
completely male-sterile hybrids. Embryo
rescue is used to overcome hybrid
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Cross-combination F1 Method

Advanced
introgression lines

(2n = 24)
MAALs

(2n = 25)

O. sativa (AA) × O. rufipogon (AA)
O. sativa (AA) × O. glumaepatula (AA)
O. sativa (AA) × O. longistaminata (AA)
O. sativa (AA) × O. glaberrima (AA)
O. sativa (AA) × O. officinalis (CC)
O. sativa (AA) × O. rhizomatis (CC)
O. sativa (AA) × O. eichingeri (CC)
O. sativa (AA) × O. minuta (BBCC)
O. sativa (AA) × O. latifolia (CCDD)
O. sativa (AA) × O. alta (CCDD)
O. sativa (AA) × O. glandiglumis (CCDD)
O. sativa (AA) × O. australiensis (EE)
O. sativa (AA) × O. brachyantha (FF)
O. sativa (AA) × O. granulata (GG)
O. sativa (AA) × O. ridleyi (HHJJ)
O. sativa (AA) × Porteresia coarctata (HHKK)

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

Direct cross
Direct cross
Direct cross
Direct cross
Embryo rescue
Embryo rescue
Embryo rescue
Embryo rescue
Embryo rescue
Embryo rescue
Embryo rescue
Embryo rescue
Embryo rescue
Embryo rescue
Embryo rescue
Embryo rescue

+
+
+
+
+

n/a
n/a
+
+

n/a
n/a
+
+
+

BC2F1

n/a

−*

−
−
−
+

n/a
n/a
+
+

n/a
n/a
+
+
+

n/a
n/a

*A minus sign (−) indicates that, because of homologous genomes, MAALs are not recovered.
+, available; n/a, not available; MAALs, monosomic alien addition lines.

Table 14.2. Wide-cross progenies between rice and wild species of Oryza produced at IRRI through
direct crosses and/or through embryo rescue.



inviability and to produce interspecific
hybrids. Several workers have produced
hybrids among O. sativa and wild species
containing BB, BBCC, CC, CCDD, EE, FF and
HHJJ genomes. These studies investigated
genomic homologies and species relation-
ships, but did not attempt to transfer useful
traits from wild species into cultivated rice.
At the International Rice Research Institute
(IRRI), a series of hybrids, MAALs repre-
senting seven to 12 chromosomes of six
wild species and introgression lines have
been produced through direct crosses, as
well as through embryo rescue following
hybridization between élite breeding lines
of rice and several distantly related species

of Oryza (Table 14.2, Fig. 14.1). Most of
these wide crosses have been used to trans-
fer useful genes into rice (Table 14.3).

An intergeneric hybrid between O.
sativa and P. coarctata has been produced
through sexual crosses following embryo
rescue (Brar et al., 1997). The hybrid is com-
pletely male-sterile. Meiotic chromosome
analysis of the hybrid showed 36 univalents
at metaphase I, indicating lack of pairing
between chromosomes of O. sativa and
P. coarctata. Continued efforts are being
made to produce back-cross progenies for
the transfer of genes for salinity tolerance
from P. coarctata to rice cultivars. So far, no
back-cross progeny has been produced.
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Fig. 14.1. Scheme showing production of monosomic alien addition lines (2n = 25) and introgression lines
(2n = 24) from crosses of rice and distantly related wild species of Oryza (modified from Brar and Khush,
1997).



Production of somatic hybrids through
protoplast fusion

Somatic hybrids through protoplast fusion
between rice and related species and
genera have been produced. Hayashi et al.
(1988) produced 250 somatic hybrid plants
through electrofusion of protoplasts of
rice with four wild species, O. officinalis,
O. eichingeri, O. brachyantha and Oryza
perrieri. The hybrid nature of these plants
was confirmed through morphological,
isozyme and karyotype analyses.

Somatic hybrid plants have also been
produced through electrofusion of proto-
plasts of O. sativa and P. coarctata, a salt-
tolerant species (Jelodar et al., 1999). A
total of 119 regenerated plants were
micropropagated. Putative somatic hybrid

plants were identified by randomly
amplified polymorphic DNA (RAPD) analy-
sis and eight plant lines were characterized
for ploidy level by flow cytometry. One line
was allohexaploid (2n = 72). The genomic in
situ hybridization (GISH) analysis showed
that the somatic hybrid had complete
chromosome complements of both O. sativa
and P. coarctata. Liu et al. (1999) produced
a highly asymmetric and fertile somatic
hybrid through protoplast fusion of O. sativa
and Zizania latifolia. Gamma ray-irradiated
mesophyll protoplasts of Zizania were elec-
trofused with iodoacetamine-inactivated
cell-suspension protoplasts of rice. The
two hybrid plants showed 2n = 24 chro-
mosomes. Southern blot analysis, using
total genomic DNA and moderate-copy Z.
latifolia-abundant DNA sequences, showed
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Donor Oryza species

Trait Wild species Genome Accession number

Transferred to Oryza sativa
Grassy stunt resistance
Bacterial blight resistance

Blast resistance
Brown planthopper resistance

White-backed planthopper resistance
Cytoplasmic male sterility

Tungro tolerance

O. nivara
O. longistaminata
O. officinalis
O. minuta
O. latifolia
O. australiensis
O. brachyantha
O. minuta
O. officinalis
O. minuta
O. latifolia
O. australiensis
O. officinalis
O. sativa f. spontanea
O. perennis
O. glumaepatula
O. rufipogon
O. rufipogon

AA
AA
CC
BBCC
CCDD
EE
FF
BBCC
CC
BBCC
CCDD
EE
CC
AA
AA
AA
AA
AA

101508
–
100896
101141
100914
100882
101232
101141
100896
101141
100914
100882
100896
–
104823
100969
105908
105909

Progenies under evaluation
Yellow stemborer
Sheath blight resistance
Increased elongation ability
Tolerance to acidity, iron and

aluminium toxicity

Tolerance to nematodes

O. longistaminata
O. minuta
O. rufipogon
O. glaberrima
O. rufipogon
O. rufipogon
O. glaberrima

AA
BBCC
AA
AA
AA
AA
AA

–
101141
CB751
Many
106412
106423
Many

Table 14.3. Introgression of genes of wild Oryza species into rice (modified from Brar and Khush,
1997).



intergenomic exchange between rice and
Zizania.

A new protocol has been used to intro-
duce Zizania DNA into rice cells. Abedinia
et al. (2000) used microprojectile bombard-
ment to introduce DNA from a tertiary gene
pool, Z. palustris, into rice. High-molecu-
lar-weight unfractionated genomic DNA of
Zizania was bombarded into the callus cells
of rice cultivar ‘Jarrah’. Selection was per-
formed throughout callus proliferation,
regeneration and plant growth. More than
250 transgenic plants were obtained. AFLP
analysis revealed many Zizania-specific
markers in transgenic plants, indicating
introgressions of the Zizania genome into
rice. Further studies are needed to confirm
the transmission of introgression in the prog-
eny of transgenic plants.

Introgression from AA genome wild species

Crosses between cultivated rice (O. sativa,
2n = 24 AA) and the AA genome wild spe-
cies can be made easily and the genes can be
transferred through conventional crossing
and back-crossing procedures. The hybrids
between O. sativa and O. rufipogon are par-
tially fertile; however, O. sativa × O. glaber-
rima and O. sativa × O. longistaminata F1s
are highly sterile. The first examples of
transfer of a useful gene from wild species
are the introgression of a gene for grassy
stunt virus resistance from O. nivara to
cultivated rice varieties (Khush, 1977) and
the transfer of a cytoplasmic male-sterile
(CMS) source from wild rice, O. sativa f.
spontanea, to develop CMS lines for com-
mercial hybrid-rice production (Lin and
Yuan, 1980). Other useful genes, such as
Xa21, for bacterial blight resistance, were
transferred to rice from O. longistaminata
and new CMS sources from O. perennis
and Oryza glumaepatula into rice. More
recently, genes for tungro tolerance and
tolerance to a moderate level of acidity
have been transferred from O. rufipogon
into indica rice cultivar ‘IR64’. A summary
of genes transferred from wild species to
cultivated rice is given in Table 14.3.

Introgression of gene(s) for resistance
to grassy stunt virus

The grassy stunt virus is a serious disease
transmitted by BPH. The diseased rice
plants either produce no panicles or
produce only small panicles with deformed
grains. The disease can cause heavy losses
in yield, particularly under epidemic condi-
tions. Ling et al. (1970) screened more than
6000 accessions of cultivated rice and sev-
eral wild species of Oryza for resistance.
Among these materials, only one accession
of O. nivara (Acc. 101508) was found to
be resistant. Crosses were made between
improved rice varieties, IR8, IR20, IR24 and
O. nivara. Following three backcrosses with
improved varieties, the gene for grassy stunt
resistance was transferred into cultivated
germplasm (Khush, 1977). The first grassy
stunt-resistant varieties, IR28, IR29 and
IR30, were released for cultivation in 1974.
Subsequently, many grassy stunt-resistant
varieties, such as IR34 and IR36, were
released. Since then, grassy stunt resistance
gene has been incorporated into many rice
varieties developed at IRRI as well as by
national rice improvement programmes.

Introgression of gene(s) for resistance
to tungro disease

Rice tungro disease (RTD) is the most
serious virus disease in South and South-
East Asia. The disease is caused either by
a single infection or by a double infection
with two virus particles, the rice tungro
bacilliform virus (RTBV) – a double-
stranded DNA virus – and the rice tungro
spherical virus (RTSV) – a single-stranded
RNA virus. The green leafhopper (GLH)
Nephotettix virescens is the principal
vector of tungro virus. Typical symptoms
include yellowing of leaves, stunted growth,
delayed heading, shortening of panicles and
reduced or no seed set.

There is a limited variability in the
cultivated rice germplasm for resistance to
RTBV, which is the main cause of tungro
symptoms. Kobayashi et al. (1993) found 15
accessions of eight wild species resistant
to RTBV. Three accessions of O. rufipogon
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(IRRC Nos 105908, 105909, 105910) showed
a low or moderate level of antibiosis to the
vector GLH. Crosses were made between
the high-yielding indica cultivar IR64 and
the above-mentioned three accessions of O.
rufipogon. Back-crosses were made with the
recurrent rice parents, IR64. The back-cross
progenies were screened under hot spots in
the field. After four back-crosses, uniform
progenies resembling the recurrent parent
and resistant to tungro disease were selected
(G.S. Khush and D.S. Brar, unpublished).
Some of the breeding lines are under
multilocation testing in The Philippines.
One of the élite breeding lines (IR73885-
1-4-3-2-1-6) resistant to tungro has been
recommended for prerelease in The Philip-
pines. We have also identified progenies
from another cross of IR64 × O. rufipogon
(Acc. no. 106424). These progenies are being
back-crossed to IR64 to obtain agronomi-
cally desirable and tungro-resistant lines.

Introgression of gene(s) for resistance
to bacterial blight

The bacterial blight caused by Xantho-
monas oryzae pv. oryzae is one of the most
destructive diseases of rice in Asia. One of
the wild species, O. longistaminata, was
found to be resistant to all races of bacterial
blight in The Philippines. Crosses were
made between IR24 and O. longistaminata.
Following four back-crosses with the
recurrent rice parent, a gene for resistance
to bacterial blight was transferred and des-
ignated as Xa21 (Khush et al., 1990). This
gene has a wide spectrum of resistance to
bacterial blight. The Xa21 has been trans-
ferred through marker-assisted selection
into several other indica lines, such as IR64
and PR106, including élite breeding lines of
new-plant-type (NPT) rice (Sanchez et al.,
2000; Singh et al., 2001).

Zhang et al. (1998) made a cross
between the rice cultivar ‘Jiagang 30’ and
O. rufipogon (RBB16). Doubled haploids
(DHs) from the F1 were produced and lines
resistant to bacterial blight were selected.
Polymerase chain reaction (PCR) analysis of
Xa21-specific primers was carried out. The

resistance gene was mapped to chromosome
11 and designated as Xa23(t). This gene also
conferred a very wide spectrum of resistance
and showed a highly resistant reaction to all
nine races of bacterial blight of The Philip-
pines. At IRRI, we have produced a large
number of advanced back-cross progenies
(introgression lines) from the cross of an élite
breeding line of NPT rice (IR65600-81-5-3-2)
and O. longistaminata. The NPT line is
highly susceptible to all six races of bacterial
blight of The Philippines. Introgression
for bacterial blight resistance has been
achieved. Some of the derived introgression
lines show longer panicles, more seeds per
panicle and increased grain yield over the
recurrent parent.

Incorporation of CMS sources from
wild species

A number of CMS sources have been
developed in rice. The most commonly
used CMS source in hybrid-rice breeding,
however, is derived from the wild species
O. sativa f. spontanea (Lin and Yuan, 1980).
The cytoplasmic source has been desig-
nated as wild abortive (WA), which refers
to a male-sterile wild rice plant having
abortive pollen. About 95% of the male-
sterile lines used in commercial rice hybrids
grown in China and other countries have
the WA type of cytoplasm.

A new CMS source from O. perennis
was transferred into indica rice (Dalmacio
et al., 1995). This newly developed CMS line
has the nuclear genome of IR64 and the
cytoplasm of O. perennis and is designated
as IR66707A. The male-sterility source of
IR66707A is different from that of WA.
Southern hybridization using mitochon-
drial DNA (mtDNA)-specific probes showed
an identical banding pattern between
IR66707A (recipient) and O. perennis
(donor). It appears that CMS may not be
caused by any major rearrangement or
modification of mtDNA. Another CMS line
(IR69700A) having the cytoplasm of O.
glumaepatula (A genome species) and the
nuclear genome of IR64 has been developed
(Dalmacio et al., 1996). No good restorer
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could be identified for these two CMS lines.
Many laboratories have transferred CMS
from other AA-genome wild species; how-
ever, this effort did not yield any good
restorers.

Introgression for tolerance to abiotic stresses

Little or no work has been done on the
transfer of genes for tolerance to abiotic
stresses from wild species into rice. We
have evaluated several introgression lines
derived from the crosses of O. sativa cv.
IR64 × O. rufipogon at hot spots under field
conditions for tolerance to abiotic stresses
at Iloilo, The Philippines. In a collaborative
project with Texas A&M University and
Cuu Long Delta Rice Research Institute
(CLRRI), Vietnam, quantitative trait loci
(QTL) for aluminium tolerance have been
identified from the cross of O. sativa × O.
rufipogon. Élite breeding lines with good
agronomic traits and moderately tolerant to
iron toxicity, aluminium toxicity and acid
sulphate conditions have been identified.
Similarly, élite breeding lines from the
cross of O. sativa × O. rufipogon that
possesses increased elongation ability
under deepwater conditions are under
multilocation testing.

Some of the wild species, such as O.
rufipogon, grow under natural conditions
in acid sulphate soils of Vietnam. Three
accessions of O. rufipogon (Acc. 106412,
106423, 106424), collected from the Dong
Thap Muoi area, Mekong Delta, Vietnam,
were used in crosses with IR64. In a collabo-
rative project, 460 lines derived from the
crosses of IR64 and O. rufipogon were sent
to CLRRI, Vietnam, in 1995 for evaluation
for tolerance to abiotic stresses. Two sets
of nurseries were tested in both target and
non-target areas. Selections were made in
subsequent generations for increased seed
fertility and improved plant type. Three
promising lines were selected and tested
through the yield-testing network of CLRRI.
Of the three breeding lines, IR73678-6-9-B
(AS996) has been released as a variety for
commercial cultivation in the Mekong Delta,
Vietnam. This variety occupies 40,000 ha

(Bui Chi Buu, personal communication). It is
a short-duration (95–100 days), semidwarf
variety with good plant type suitable for
moderately acid sulphate soils and is
tolerant to BPH and blast.

Introgression from African rice
(O. glaberrima) into Asian rice (O. sativa)

The cultivars of Asian rice, O. sativa,
are high-yielding, whereas African rice, O.
glaberrima, is low-yielding and is suscepti-
ble to lodging and grain shattering. Oryza
glaberrima has several desirable traits, such
as resistance to RYMV, African gall midge
and nematodes and tolerance to drought,
acidity and iron toxicity. Soriano et al.
(1999) identified one accession of O.
longistaminata (WL-02) and three accessions
of O. glaberrima (TOG7235, TOG5674,
TOG5675) that were highly resistant to
root-knot nematode (Meloidogyne gramini-
cola). One of the important features of O.
glaberrima is its strong weed-competitive
ability. Thus, the interspecific hybridiza-
tion among Asian and African species offers
tremendous potential for combining the
high productivity of O. sativa with the
tolerance to biotic and abiotic stresses
of O. glaberrima. The F1 hybrids between
O. sativa and O. glaberrima, in spite of
complete chromosome pairing, are highly
sterile. Back-crossing is used to restore
fertility and derive agronomically desirable
lines.

Major efforts have been made at the
West Africa Rice Development Association
(WARDA), Africa, to introgress useful
genes from O. glaberrima into élite breeding
lines of O. sativa (Jones et al., 1997). More
than 1100 O. glaberrima accessions were
evaluated for various morpho-agronomic
characteristics. Most of the O. glaberrima
accessions have profuse vegetative vigour,
with droopy lower leaves, and possess high
specific leaf area (SLA). These features con-
tribute to the weed-competitive ability of
O. glaberrima. Seedling vigour of the proge-
nies derived from O. sativa × O. glaberrima
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varied between 1 (extra vigour) and 5 (nor-
mal). Ten progenies scored 1 or 2. Under
high-input conditions, several progenies
outyielded the O. glaberrima parent (CG14)
and were equivalent in yield to O. sativa.
Under low-input management, however, a
few progenies outyielded O. sativa and some
had grain yields similar to or higher than
O. glaberrima, indicating their adaptation to
low-input conditions.

Johnson et al. (1998) conducted studies
on the weed-competitive ability of O. glab-
errima (IG10). Oryza glaberrima suffered
less from competition with weeds and sup-
pressed weeds better than O. sativa. IG10
accumulated more biomass, produced more
tillers, had higher SLA and, in the earlier
stages of growth, partitioned more of its
biomass to leaves than O. sativa, but IG10
produced a higher yield in competition with
weeds.

Dingkuhn et al. (1998) compared the
growth and yield potential of CG14 (O.
glaberrima), WAB56-104 (O. sativa) and
their progeny under different management
conditions. CG14 produced two to three
times the leaf area index (LAI) and tiller
numbers more than WAB56-104. The pro-
genies had intermediate LAI, SLA and leaf
chlorophyll content. A conclusion is that,
to combine high weed competitiveness
and high yield in a single line, we need to
develop genotypes with high SLA during
vegetative growth (for weed competitive-
ness) to accelerate leaf area development,
followed by a rapid decrease in SLA dur-
ing the reproductive growth phase (for
high yield potential) to ensure high leaf
photosynthesis.

At IRRI, a large number of advanced
introgression lines have been produced from
the crosses of O. sativa cvs IR64 and BG90-2
and several accessions of O. glaberrima.
These progenies are being evaluated in
a collaborative project with WARDA for
introgression for tolerance to RYMV, African
gall midge and abiotic stresses. Some lines
for tolerance to iron toxicity have been
identified. Molecular analyses indicate
frequent recombination between O. sativa
and O. glaberrima.

Development of doubled haploids (DHs)
from O. sativa × O. glaberrima

Many laboratories, including WARDA and
IRRI and others, are engaged in combining
the high productivity of O. sativa with the
tolerance to major biotic and abiotic stresses
and weed-competitive ability of O. glaber-
rima. The two species show strong repro-
ductive barriers, however, and their F1s
exhibit a high level of sterility. Several
sterility genes differentiate the two species
(Oka, 1988). Anther culture is being explored
to develop DH lines from the crosses of O.
sativa × O. glaberrima in order to overcome
sterility and produce homozygous lines,
fix recombinants and use the DH lines
as mapping populations. Jones et al. (1997)
reported the production of DH lines from
such crosses and their utilization in rice
improvement. Among the plants regenerated
from anther culture, 52% were haploid,
41% DHs and 7% polyploids. Fifteen per
cent of the spontaneously generated DH
lines had partial sterility.

At IRRI, we have cultured anthers of 75
F1s involving ten varieties of O. sativa and 18
accessions of O. glaberrima. Upon culture of
45,400 anthers from 75 F1s, no calluses were
produced from 34 crosses (Enriquez et al.,
2000). The other 41 F1s showed, on average,
1.3% callus formation from 144,160 cultured
anthers. The plant regeneration rate ranged
from 0.0 to 77.0%. The anther-derived cal-
luses from 16 F1s did not show any plant
regeneration. Among O. sativa lines, an élite
breeding line of the NPT IR68552-55-3-2
responded better in producing green plants
in crosses with O. glaberrima. Similarly, O.
glaberrima (CG14) in crosses with some of O.
sativa parents responded favourably to anther
culture. Although 562 DH lines could be
produced from different crosses, a majority
of them showed very high seed sterility (56.2
to 100.0%). The high sterility of DH lines is
indicative of the presence of several loci for
sterility that differentiate between the Asian
and African rice species. Genotyping of DH
lines using microsatellite markers indicated
a frequent exchange of chromosome seg-
ments between O. sativa and O. glaberrima.
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Construction of chromosome substitution
lines of O. glaberrima in the

background of O. sativa

Many laboratories are engaged in construct-
ing chromosome substitution lines (CSLs)
of O. glaberrima. Such lines would be
important for understanding the genetics of
useful traits, such as the tolerance to biotic
and abiotic stresses and the weed competi-
tiveness of O. glaberrima. Doi et al. (1997)
constructed a series of O. glaberrima (Acc.
104038) CSLs in the background of japonica
rice, Taichung 65. From 45 BC3F2, 907
plants were genotyped and a subset of 39
CSLs that carried homozygous chromosome
segments from the donor, O. glaberrima,
were selected. These lines cover most parts
of the O. glaberrima genome. Ghesquiere
et al. (1997) initiated a molecular marker-
aided back-cross programme to develop a
set of 100 ‘contig lines’, each carrying an O.
glaberrima chromosome fragment of around
20 cM in the O. sativa background.

At IRRI, we are using microsatellite
markers to identify BC2F3/BC3F3 lines from
the crosses of O. sativa × O. glaberrima car-
rying different segments of O. glaberrima in
the background of the high-yielding indica
cv. IR64 and an élite breeding line of NPT
rice. Such CSLs would be an important
resource for the functional genomics of rice.

Identification and introgression of
yield-enhancing loci/QTL from wild species

Wild species are phenotypically inferior to
the cultivated species. As discussed in the
preceding sections, these wild species are a
rich reservoir of useful genes for resistance
to major diseases and insects and for toler-
ance to abiotic stresses. Recent findings
have shown they contain genes capable of
improving yield as well. Deleterious genes
often mask these favourable genes. Trans-
gressive segregation for yield in crosses of
cultivated and wild species suggests that,
despite inferior phenotypes, wild species
contain genes that can improve quantitative
traits, such as yield. Molecular markers
have made it possible to identify and

introgress desirable QTL from wild species
into élite breeding lines. Tanksley and Nel-
son (1996) proposed advanced back-cross
QTL analysis to discover and transfer
valuable QTL alleles from unadapted germ-
plasm, such as wild species, into élite
breeding lines of species.

Transgressive segregation for yield and
yield components has been obtained in cros-
ses of rice and AA-genome species. QTL
from wild species of rice for increased yield
have been identified. Xiao et al. (1996) ana-
lysed 300 BC2 testcross families produced
from the cross of O. sativa × O. rufipogon.
On average, each BC2 test-cross line con-
tained 5% O. rufipogon genome. In most
cases, introgression of O. rufipogon alleles
either had no significant effect on yield or
was inferior to the alleles of cultivated rice.
Oryza rufipogon alleles at two marker loci,
RM5 (yld1-1) on chromosome 1 and RG256
on chromosome 2 (yld2-1), were, however,
associated with enhanced yield. The alleles
yld1-1 and yld2-1 were both associated with
a significant increase in grains per plant.
In another experiment, Xiao et al. (1998)
identified 68 QTL. Of these, 35 (51%) had
trait-improving alleles derived from the
phenotypically inferior wild species.
Nineteen (56%) of these beneficial QTL
alleles had no deleterious effects on other
characters.

Recently, Moncada et al. (2001) fol-
lowed the advanced-back-cross breeding
strategy and analysed BC2F2 populations
derived from the cross involving an upland
japonica rice cultivar, ‘Caiapo’, from Brazil
and an accession of O. rufipogon from
Malaysia. The populations were tested under
drought-prone, acid soil conditions. Based
on analyses of 125 simple sequence repeat
(SSR) and RFLP markers, using single-point,
interval and composite-interval mapping,
two putative O. rufipogon-derived QTL
were detected for yield, 13 for yield compo-
nents, four for maturity and six for plant
height. Advanced-back-cross QTL analysis
showed that certain regions of the rice
genome harbour genes that are useful across
a range of environments.

Our preliminary results, at IRRI, of
advanced-back-cross progenies derived
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from the crosses of IR65600-81-5-3-2, an
élite breeding line of NPT rice, with O. longi-
staminata and IR64 × O. rufipogon, also
support transgressive segregation for yield
and yield components. These findings show
that genes from wild species can increase
the yield of élite rice lines, even though
wild species are phenotypically inferior to
cultivated rice.

Introgression from distantly related genomes

Hybrids between cultivated rice and AA-
genome wild species can be produced
through normal procedures. Hybrids
between rice and distantly related wild
species are usually difficult to produce.
Low crossability and abortion of hybrid
embryos are the common features of such
crosses. These hybrids are completely male-
sterile. Subsequent back-crosses are made
with the recurrent rice parent to produce
disomic progenies (2n = 24). Embryo rescue
is used to produce F1 and back-cross pro-
genies until fertile plants with the normal
diploid chromosome complement (2n = 24)
or 2n = 25 (MAALs) become available (Fig.
14.1). The fertile progenies are selfed to
produce advanced introgression lines and
evaluated for transfer of useful traits. We
have produced MAALs representing seven
to 12 chromosomes from six species (Table
14.2). These MAALs are important cyto-
genetic stocks carrying an individual extra
chromosome of wild species and serve as an
important source of alien genetic variation
and for mapping genes on chromosomes.

Introgression from the CC genome

Interspecific hybrids have been produced
through embryo rescue between rice and
wild species with the CC genome. Jena
and Khush (1990) produced several intro-
gression lines from the cross of O. sativa ×
O. officinalis. Useful genes for resistance
to BPH, the white-backed planthopper
(WBPH) and bacterial blight have been
transferred from O. officinalis into an élite
breeding line of rice. Several introgression

lines resistant to three BPH biotypes of The
Philippines were evaluated for resistance to
BPH populations in India and Bangladesh.
Many progenies were found to be resistant
to BPH in the three countries. A few of the
BPH-resistant lines were also resistant to
BPH populations in Vietnam. Three breed-
ing lines have been released as varieties
for commercial cultivation in the Mekong
Delta of Vietnam. IR54751-2-44-15-24-3 was
designated as MTL98, IR54751-2-34-10-6-2
as MTL 103 and IR54751-2-41-10-5-1 as
MTL 105.

Hirabayashi and Ogawa (1999) analysed
recombinant inbred lines (RILs) from
the cross between ‘Hinohikari’ (susceptible
japonica) with the IR54742-1-11-17 indica
introgression line derived from crosses of
O. sativa × O. officinalis. Two genes for
BPH resistance, bph11(t) and bph12(t), were
identified and mapped to chromosomes
3 and 4 of rice. Huang et al. (2001) made
crosses between the rice cultivar ‘Zhensheng
97B’ and O. officinalis. One of the introgres-
sion lines, B5, showed a strong resistance
to BPH biotypes 1 and 2 and to field popu-
lations collected from Zhejiang Province,
China.

We have produced several introgression
lines from the crosses of O. sativa cvs
M202 (japonica) and IR74 (indica) with O.
officinalis (Acc. 101399). These progenies
are under evaluation for the possible intro-
gression of stem-rot resistance into rice.

Introgression from BBCC-genome parents

Interspecific hybrids have been produced
between O. sativa and the tetraploid wild
species O. minuta (BBCC) (Sitch, 1990).
Following back-crossing and embryo res-
cue, advanced introgression lines have
been produced from the cross of O. sativa
(IR31917-45-3-2) and O. minuta (Acc.
101141). Amante-Bordeos et al. (1992)
evaluated advanced progenies for resistance
to bacterial blight and blast. Two introgres-
sion lines were resistant – one to race 6 of
bacterial blight and another to race PO6-6
of blast. The introgressed blast gene has
been designated as Pi9(t). It has resistance
to several isolates of blast. Brar et al. (1996)
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evaluated introgression lines derived from
O. sativa × O. minuta. Of the 96 back-cross
progenies screened, ten showed introgres-
sion for resistance to BPH biotype 1 of The
Philippines.

Resistance to sheath blight, another seri-
ous disease, is limited or is of a moderate
level, in both the cultivated and the wild
species. Oryza minuta, however, is compar-
atively tolerant to sheath blight. We are eval-
uating advanced introgression lines derived
from the cross of O. sativa × O. minuta for
tolerance to sheath blight.

Introgression from CCDD-genome parents

A number of workers have produced hybrids
between rice and CCDD-genome species
(Sitch, 1990; Brar et al., 1991). Of the three
CCDD species, advanced lines derived from
the cross of O. sativa × O. latifolia have
been investigated. Introgression from O.
latifolia for resistance to BPH, WBPH and
bacterial blight and for other traits, such as
growth duration and purple pigmentation,
has been obtained (unpublished).

Introgression from the EE genome

Multani et al. (1994) produced hybrids
between colchicine-induced autotetraploids
of rice and O. australiensis (2n = 24 EE).
Introgression was detected for morphologi-
cal traits, such as long awns and earliness,
and for Amp-3 and Est-2 allozymes. Of the
600 BC2F4 progenies, four were resistant to
BPH and one to race 6 of bacterial blight.
BPH resistance was found to be controlled
by a recessive gene in two of the four lines
but was controlled by a dominant gene
in the other two lines. One of the lines
(IR65782-4-136-2-2) carried the Bph10
gene.

Introgression from the FF genome

A series of introgression lines has been
derived from the cross of O. sativa cv.
IR56 and the wild species, O. brachyantha
(2n = 24 FF). IR56 is susceptible to bacterial
blight races 1–4 and 6 from The Philip-
pines, whereas O. brachyantha is resistant.

Of the 149 back-cross progenies analysed,
27 showed introgression for resistance to
bacterial blight races 1–4 and 6 (Brar et al.,
1996).

Introgression from GG-genome

Hybrids have been produced from the cross
of O. sativa and O. granulata (Brar et al.,
1991). Advanced progenies have also been
produced; however, none of the lines tested
has shown introgression of traits from
O. granulata into rice.

BC2 progenies derived from the crosses
of O. sativa with O. officinalis (CC), O.
australiensis (EE), O. brachyantha (FF) and
O. granulata (GG) resembled the recurrent
rice parent in most morphological traits.
This suggested that only a limited amount
of recombination between the A genome of
O. sativa and the C, E, F and G genomes
of wild species occurred.

Introgression from HHJJ-genome parents

Hybrids between rice cv. IR56 and O. ridleyi
(Acc. 100821) have been produced. The
tetraploid Ridleyi complex includes two
species; O. ridleyi and O. longiglumis. A
few introgression lines (BC2F1) from this
cross have been produced; however, no
introgression could be detected.

Introgression from the HHKK genome

Intergeneric hybrids between O. sativa
and P. coarctata have been produced both
through sexual crosses following embryo
rescue (Brar et al., 1997) and through
protoplast fusion (Jelodar et al., 1999).
Due to strong incompatibility barriers, no
back-cross progenies could be obtained.

Molecular mapping of introgressed
alien genes

Traits introgressed from different wild
species into rice are listed in Table 14.3.
Some of the introgressed genes have been
mapped via linkage to molecular markers.
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Mapping of the Xa21 gene for bacterial
blight resistance

The Xa21 gene, introgressed from O. longi-
staminata, has been mapped to chromo-
some 11, close to the RG103 marker (Ronald
et al., 1992). This gene has been transferred
through marker-assisted selection into
several rice cultivars – IR64, PR106 – and
NPT rice (Sanchez et al., 2000; Singh et al.,
2001). Wang et al. (1995) used a bacterial
artificial chromosome (BAC) library and
isolated 12 BAC clones that hybridized with
the three DNA markers linked to the Xa21
locus. Jiang et al. (1995) used BAC clones
and FISH and physically mapped Xa21
locus to chromosome 11 of rice. The Xa21
gene has been isolated (Song et al., 1995)
via positional cloning. The transgenic plants
carrying the cloned Xa21 show a high level
of resistance to bacterial blight pathogen.

Mapping of Bph10(t) for BPH resistance

A gene conferring resistance to three BPH
biotypes from The Philippines was intro-
gressed from O. australiensis into rice
(Multani et al., 1994). MAAL analyses
showed that the gene for BPH resistance is
located on chromosome 12 of O. austra-
liensis. Hence, probes of chromosome 12
were used for an RFLP survey with the
recurrent parent, the wild species and
the introgression line. All 14 probes were
polymorphic in the recurrent parent and
the wild species; however, only RG457
detected introgression from O. australiensis
into the introgression line. Cosegregation
for BPH reaction and RG457 was deter-
mined from the F2 data. The gene for BPH
resistance is linked to RG457, with a dis-
tance of 3.68 ± 1.29 cM (Ishii et al., 1994).

Mapping of QTL for BPH resistance

BPH resistance was introgressed from O.
officinalis into rice cv. ‘Zhenshan 97B’.
Huang et al. (2001) carried out bulk segre-
gant analysis of F3 populations produced
from the cross between the BPH-resistant
introgression line ‘B5’, derived from O.

officinalis and ‘Mingui 63’, a rice cultivar
susceptible to BPH. QTL analyses revealed
that qbp1 was located in the 14.3 cM inter-
val between R2443 and R1925 on the long
arm of chromosome 3. This QTL explained
a 26.4% phenotypic variation for BPH resis-
tance. The second QTL, qbp2, was mapped
to chromosome 4, with a 0.4 cM interval
between C820 and R288.

Mapping of a gene for earliness

The introgression line (IR65482-4-136-2-2),
derived from a cross of O. sativa and
O. australiensis, was crossed with the
recurrent parent (IR31917-45-3-2). The F2

segregation indicated that the introgressed
gene for earliness is recessive. Since the
gene for earliness is located on chromosome
10 (Sato et al., 1985), probes from chromo-
some 10 were hybridized with the DNA of
the recurrent parent, the wild species and
the introgression line. All five probes were
polymorphic between recurrent parent and
wild species. Only CDO98 detected intro-
gression from O. australiensis, however.
Cosegregation between CDO98 and days
to flowering in F2 showed that the gene
for earliness is situated at a distance of
9.96 ± 3.28 cM from CDO98, thus indicating
that this recessive gene for earliness is
also located on chromosome 10 of O.
australiensis.

Mapping of the gene (Pi9t) for blast resistance

A gene for blast resistance (Pi9t) was
introgressed from O. minuta (BBCC) into
rice (Amante-Bordeos et al., 1992). The
introgression line (IR71033-4-127-B) was
surveyed using 103 polymorphic RFLP
markers, located at an average distance of
20 cM intervals in the rice genome. No link-
age, however, could be established between
any markers and Pi9t. In another experi-
ment, a back-cross population, produced
by crossing the introgression line and
the susceptible parent IR31917-45-3-2, was
analysed. Three RAPD markers have been
found to be linked to Pi9t (Reimer and
Nelson, unpublished).
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Molecular characterization of
alien introgression

Molecular markers and in situ hybridiza-
tion techniques provide a unique opportu-
nity to determine the extent and process of
alien introgression. Jena et al. (1992) ana-
lysed 52 introgression lines (BC2F8) derived
from crosses of O. sativa × O. officinalis. Of
the 177 RFLP markers, 174 were polymor-
phic between the two parents, with one or
more enzymes. Most markers were poly-
morphic with multiple enzymes, but Hind
digests showed highest polymorphism
(85.8%). Of the 174 informative RFLP
markers, 28 (16.1%) identified putative
O. officinalis introgressed segments in one
or more of the introgression lines. Individ-
ual introgression lines contained 1.1–6.8%
introgressed O. officinalis segments. Intro-
gressed segments were found on 11 of
the 12 rice chromosomes. In a majority
of cases, O. sativa alleles were replaced by
O. officinalis alleles. Introgressed segments
were smaller in size and similar in plants
derived from early and later generations.
Single RFLP markers detected most intro-
gressed segments, and the flanking markers
were negative for introgression. Brar et al.
(1996) analysed 29 derivatives of O. sativa
× O. brachyantha and 40 derivatives of
O. sativa × O. granulata. Extensive poly-
morphism between rice and wild species
was observed. Of the six chromosomes sur-
veyed, no introgression was detected from
chromosomes 7, 9, 10 or 12 of O. granulata
and chromosome 10 or 12 of O. brachy-
antha. For each of the remaining chromo-
somes, one or two RFLP markers showed
introgression in some of the derived lines.
Although the level of introgression was low,
the results showed possibilities of intro-
gressing chromosome segments even from
distantly related genomes into cultivated
rice and thus the feasibility of transferring
useful genes from distant Oryza species.

Microsatellite markers show extensive
polymorphism between O. sativa and O.
glaberrima. Analysis of DH populations

derived through anther culture of O. sativa
× O. glaberrima showed frequent exchange
of chromosome segments between O. sativa
and O. glaberrima. In some of the alien
introgression lines, non-parental bands were
detected. This could result from genomic
interactions of cultivated and wild species
or an activation of some transposable ele-
ments producing novel bands.

In situ hybridization is a powerful tech-
nique for characterizing parental genomes
in wide hybrids and detecting introgressed
alien segments. The protocols for FISH
of rice chromosomes have been refined
(Fukui et al., 1994). Variability in rDNA
loci has been detected through FISH in
Oryza species (Fukui et al., 1994). Jiang et al.
(1995) mapped the Xa21 gene derived from
O. longistaminata to rice chromosomes,
using FISH and BAC clones. Shishido et al.
(1998) used multicolour FISH to character-
ize A, B and C genomes in somatic hybrids of
rice.

We have used GISH and characterized
parental chromosomes in wide hybrids
(F1, BC1) involving O. sativa × O. officinalis,
O. sativa × O. brachyantha, O. sativa ×
O. australiensis and O. sativa × O. ridleyi.
The alien extra chromosome in MAALs
and introgressed segments could also be
identified. Abbasi et al. (1999) used total
genomic DNA of O. australiensis as a probe
and hybridized it with the meiotic chromo-
somes of the F1 hybrid (O. sativa × O. austra-
liensis). Both autosyndetic and allosyndetic
pairing among A and E genomes could
be detected. GISH is now being extended
to detect pairing among A genome and
other distantly related genomes of Oryza at
pachytene in order to precisely understand
the process of alien introgression, particu-
larly of small chromosome segments. Asghar
et al. (1998) applied FISH for characterizing
the chromosomes of O. sativa and O. officin-
alis and located rDNA loci on somatic chro-
mosomes of both O. sativa and O. officinalis.
Yan et al. (1999) used FISH to characterize
A- and C-genome chromosomes in F1 and
BC1 of O. sativa × O. eichingeri.
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Mechanism of alien introgression

Molecular analysis of introgression lines
derived from crosses of O. sativa with AA-
genome wild species, such as O. glaberrima
and O. rufipogon, revealed recombination
resulting from classical crossing over. No
hot spots for chromosome recombination
could be detected. Cytogenetic and
molecular-marker analysis of introgression
lines derived from O. sativa and distantly
related Oryza species did not show any
evidence of alien chromosome substitution.
The results indicate genetic recombination
between chromosomes of cultivated and
wild species as the cause of alien gene
transfer. RFLP analyses of introgression
lines showing reciprocal replacement of
alleles of O. officinalis, O. australiensis and
O. brachyantha with the alleles of O. sativa
further support alien gene transfer through
crossing over, rather than the substitution
of a complete chromosome or an arm of a
chromosome of wild species (Jena et al.,
1992; Ishii et al., 1994; Brar et al., 1996).
The rapid recovery of recurrent parent
phenotypes in BC2 and BC3 of O. sativa ×
O. officinalis, O. sativa × O. australiensis,
O. sativa × O. brachyantha and O. sativa ×
O. granulata is an indication of limited
recombination between the A genome,
on the one hand, and the C, E, F and G
genomes, on the other. Progenies recovered
in BC2 of O. sativa × O. officinalis were so
similar to O. sativa that they were evaluated
in field trials and released as varieties for
commercial cultivation in Vietnam.

Most introgressed segments were
detected via single RFLP and SSR markers
and the flanking markers were negative for
introgression. This also supports the conclu-
sion regarding limited recombination and
the possible cause for the rapid recovery
of the recurrent parent phenotype. Rapid
recovery of the recurrent parent phenotypes
in the back-cross progenies of wide crosses
has been reported in Gossypium by Stephens
(1949) and Lycopersicon by Rick (1969),
although a higher number of back-crosses
was required to reconstitute the recurrent
phenotypes.

Future Outlook on Gene Transfer from
Wild Species to Rice

Rice productivity is adversely affected by
various biotic and abiotic stresses. There is
thus an urgent need to widen the rice gene
pool by incorporating genes for such traits
from diverse sources. Wild species are an
important reservoir of useful genes and
offer great potential to incorporate such
genes into commercial rice cultivars for
resistance to major diseases and insects
and tolerance to various abiotic stresses.
Moreover, many of the useful alien genes
are different from those of the cultivated
species and are thus useful in expanding
the sources of resistance to various stresses.
The introgressed alien genes have become
a valuable addition for molecular marker-
assisted selection. Several studies have
demonstrated transgressive segregation for
yield and yield components from crosses of
rice and closely related AA-genome wild
species. Molecular markers have made it
possible to identify and introgress such
yield-enhancing locus/QTL ‘wild alleles’
into rice cultivars and thus offer new
opportunities for enhancing the grain yield
of rice. Future research should focus on
overcoming one of the key barriers in
the transfer of useful genes from distantly
related wild species by enhancing recom-
bination among the homologous chro-
mosomes. One strategy should aim at
identifying gene(s) controlling homologous
chromosome pairing in Oryza. Alien intro-
gression could also be enhanced through
tissue culture of wide hybrids resulting
from chromosomal exchanges between
genomes of cultivated and wild species.
With the advances in tissue culture,
molecular markers, in situ hybridization
and genomics, the future outlook for
broadening the gene pool of rice through
the precise transfer of useful genes from
wild species into rice cultivars seems more
promising than ever before.
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Introduction

Genotype–environment interaction (GEI) is
an age-old, universal issue that relates to all
living organisms. Genotypes and environ-
ments interact to produce an array of pheno-
types. GEI can be defined as the difference
between the phenotypic value and the value
expected from the corresponding genotypic
and environmental values (Baker, 1988).
When responses of two genotypes to differ-
ent levels of environmental stress are com-
pared, an interaction is described statistically
as the failure of the two response curves to
be parallel (Baker, 1988). GEI is the varia-
tion caused by the joint effects of genotypes
and environments (Dickerson, 1962).

Breeders/agronomists usually test a
diverse array of genotypes in diverse envi-
ronments, which implies that GEI is to be
expected. According to Haldane (1947), GEI
is important only if genotypes switch ranks
from one environment to another. GEIs
can be grouped into two broad categories:
crossover and non-crossover interactions; a
brief discussion of each follows.

Crossover and non-crossover interaction

Crossover (qualitative) interaction

The differential response of cultivars to
diverse environments is referred to as a

crossover interaction when cultivar ranks
change from one environment to another. A
main feature of crossover interaction is
intersecting lines in a graphical representa-
tion. If the lines do not intersect, there is no
crossover interaction (Kang, 1998).

In crop breeding, the crossover inter-
action is more important than non-crossover
interaction (Baker, 1990). Since the presence
of a crossover interaction has strong implica-
tions for breeding for specific adaptation,
it is important to assess the frequency of
crossover interactions (Singh et al., 1999).
According to Gregorius and Namkoong
(1986), crossover interaction is not only
non-additive in nature but also non-
separable. Lack of crossover interaction
for quantitative trait loci (QTL) even in
the presence of significant GEI has been
reported (Lee, 1995; Beavis and Keim, 1996).
The reader may refer to Beavis and Keim
(1996), Cornelius et al. (1996), Crossa et al.
(1996) and Singh et al. (1999) for further
discussion on crossover and non-crossover
interactions.

Variation among genotypes in pheno-
typic sensitivity to the environment (GEI)
may necessitate the development of locally
adapted varieties (Falconer, 1952). If no one
genotype has superiority in all situations,
GEI indicates the potential for genetic differ-
entiation of populations under prolonged
selection in different environments (Via,
1984).
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Non-crossover (quantitative) interaction

These interactions represent changes in
magnitude of genotype performance (quan-
titative), but rank order of genotypes across
environments remains unchanged, i.e. geno-
types that are superior in one environment
maintain their superiority in other environ-
ments. Non-crossover interactions may
mean that genotypes are genetically hetero-
geneous but test environments are more
or less homogeneous or that genotypes are
genetically homogeneous but environments
are heterogeneous. All identical genotypes
grown in constant (ideal) environments
should perform consistently. Any departure
from the ideal environment leads to GEI.

Importance of GEI

Thus far, agricultural production has kept
pace with the world’s population growth
mainly because of the innovative ideas and
efforts of agricultural researchers. The world
population, currently 6 thousand million, is
expected to almost double – to 10 thousand
million – by the middle of the 21st century
(Kang, 2002). The key to doubling agri-
cultural production is increased efficiency
in the utilization of resources (increased
productivity per hectare and per dollar) and
this includes a better understanding of GEI
and ways of exploiting it.

The importance of GEI is highlighted by
Gauch and Zobel (1996):

Were there no interaction, a single variety
of wheat (Triticum aestivum L.) or corn
(Zea mays L.) or any other crop would yield
the most the world over, and furthermore
the variety trial need be conducted at only
one location to provide universal results.
And were there no noise, experimental
results would be exact, identifying the best
variety without error, and there would be
no need for replication. So, one replicate at
one location would identify that one best
wheat variety that flourishes worldwide.

The importance of GEI can be seen from
the relative contributions of new cultivars
and improved management to yield increases
from direct comparisons of yields of old and

new varieties in a single trial (Silvey, 1981).
Genetic improvements have been estimated
to account for about 50% of the total gains in
yield per unit area for major crops during the
past 50–60 years (Silvey, 1981; Simmonds,
1981; Duvick, 1992, 1996). The remainder of
the yield gain is attributable to improved
management and cultural practices. Barley
yield data from the UK (1946–1977: mean
yield for 1946 = 2.3 t ha−1 and for 1977 =
3.9 t ha−1) indicated that the environmental
contribution was 10–30% and the genetic
contribution 30–60%; the remainder 25–45%
of the yield gain was attributed to GEI
(Simmonds, 1981). For wheat for the same
period (1946–1977: mean yield for 1946 =
2.4 t ha−1 and for 1977 = 4.7 t ha−1), yield
gain was attributed as follows: 40–60% to
the environment (E), 25–40% to the geno-
type (G) and 15–25% to GEI (Simmonds,
1981). The GEI confounds precise partition-
ing of the contributions of improved culti-
vars and improved environment/technology
to yield (Silvey, 1981). Thus, the com-
bined contributions of G and genotype–
environment (GE) effects can be substantial
(40–60% wheat and 70–90% in barley).

GEI occurs during and has an impact
on all stages of a breeding programme and
has enormous implications for the allocation
of resources. A large GEI could mean the
establishment of two full-fledged breeding
stations in a region, instead of one, thus
requiring increased input of resources
(manpower, land and money).

Heritability of a trait plays a key role in
determining genetic advance from selection.
As a component of the total phenotypic vari-
ance (the denominator in any heritability
equation), GE interaction affects heritability
negatively. The larger the GEI component,
the smaller the heritability estimate; thus,
progress from selection would be limited.

A large GEI reflects the need for testing
cultivars in numerous environments (loca-
tions and/or years) to obtain reliable results.
If the weather patterns and/or management
practices differ in target areas, testing must
be done at several sites representative of the
target areas.

Kang (1993a) discussed the disadvan-
tages of discarding genotypes evaluated in
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only one environment in early stages of a
breeding programme. The discarded geno-
types might have the potential to do well at
another location or in another year. Thus,
some potentially useful genes could be ‘lost’
due to limited testing. An example from six-
row barley illustrates this point well. A total
of 288 barley lines were evaluated in the
Magreb countries and in International Cen-
ter for Agricultural Research in Dry Areas
(ICARDA)’s yield trials at three locations
(Ceccarelli et al., 1994). Of the 103 lines sel-
ected at ICARDA and 154 lines at the Magreb,
only 49 were selected at both locations.

Performance evaluation is the second
component of a breeding programme. Test-
ing done in one environment provides only
limited information. Multienvironment test-
ing provides additional useful information,
e.g. a GEI component can be estimated. In
addition, multienvironment testing yields
better estimates of variance components
and heritability. Therefore, GEI need not be
perceived only as a problem.

As the magnitude of a significant inter-
action between two factors increases, the
usefulness and reliability of the main effects
are correspondingly decreased. Since GEI
reduces the correlation between pheno-
typic and genotypic values, the difficulty in
identifying truly superior genotypes across
environments is magnified.

Obviously, the cost of cultivar evalua-
tion increases as additional testing is carried
out. However, with additional test environ-
ments, a breeder/agronomist can identify
cultivars with specific adaptation as well as
those with broad adaptation, which will not
be possible from testing in a single environ-
ment. Broad adaptation provides stability
against the variability inherent in an ecosys-
tem, but specific adaptations may provide
a significant yield advantage in particular
environments (Wade et al., 1999). Multi-
environment testing makes it possible to
identify cultivars that perform consistently
from year to year (small temporal variability)
and those that perform consistently from
location to location (small spatial varia-
bility). Temporal stability is desired by
and beneficial to growers, whereas spatial
stability is beneficial to seed companies and

breeders. Stability of performance can be
ascertained via stability statistics (Lin et al.,
1986; Kang, 1990; Kang and Gauch, 1996).

Achievements

The GEI issue received focused attention in
1990 when an international symposium on
‘Genotype-by-Environment Interaction and
Plant Breeding’ was held on 12 and 13
February at the Louisiana State University
campus in Baton Rouge (Kang, 1990). The
various GEI issues have come to the
forefront in many breeding programmes
throughout the world. Reviews and exten-
sive bibliographies (Aastveit and Mejza,
1992; Annicchiarico and Perenzin, 1994;
Denis and Gower, 1996; Denis et al., 1996a;
Kang, 1998; Piepho, 1998), conference/
symposia proceedings (Rao et al., 1988,
1993; Cooper and Hammer, 1996; Zavala-
Garcia and Treviño-Hernández, 2000) and
books (Gauch, 1992; Prabhakaran and Jain,
1994; Hildebrand and Russell, 1996; Kang
and Gauch, 1996; Hoffmann and Parsons,
1997; Basford and Tukey, 1999; Hall, 2001)
have since been published. The issue is not
only important in plant-breeding program-
mes but also in animal-breeding program-
mes (Lin and Lin, 1994; Montaldo, 2001).

GEI presents many challenges for breed-
ers and has significant implications in both
applied plant- and animal-breeding pro-
grammes. The breeder is faced with develop-
ing separate populations for each site type
where genotypic rankings drastically change
and/or is faced with selecting genotypes that
generally perform well across many sites
(McKeand et al., 1990). Gains are expected
to be greater with the first approach, but
costs would also likely be higher; the second
approach, while less expensive, yields
smaller gains. Denis and Gower (1996)
suggested that plant breeders should
consider GEI to avoid missing a variety
that performed, on average, poorly but did
well when grown in specific environments
or selecting a variety that, on average, per-
formed well but did poorly when grown in a
particular environment.
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Type Statistics included

Univariate
parametric
methods

S2X1: environmental variance (Sxi
2 )

Attributed to Roemer (1917) in Becker and Leon (1988). Measures deviations from the
genotypic mean. Minimum variance in different environments = stable genotype

EBRAS: Eberhart and Russell (1966): optimal yield stability measured via regression
represented by high mean yield, moderate to high bi or responsive to favourable
environments, and low deviations from regression (Sdi

2 )

TAI: regression approach employed by Tai (1971). Uses two statistics, as is the case
with Eberhart and Russell (1966): linear response of a genotype to environmental
effects (αi) and deviation from linear response (λi)
Stable genotype: (αi, λi) = (−1, 1)

SHUKLA: unbiased estimate of GEI variance attributed to each genotype (σ i
2) proposed

by Shukla (1972)
Comparison of σ i

2 with pooled error (σ 0
2) from ANOVA: a significant F test indicates

instability

CV: Francis and Kannenberg (1978) proposed combined use of yield and CVi. CV is
plotted against mean yield across environments. Low CV and high mean yield = stable,
desirable genotype

PI: superiority measure (Pi) proposed by Lin and Binns (1988) = distance mean square
between genotype’s response and maximum response in each environment (averaged
across environments). Low Pi = high stability

Univariate
non-parametric
methods

S1O, S2O, S3O and S6O: Hühn (1979) proposed non-parametric stability statistics
(Si

1, Si
2, Si

3, Si
6). The lowest value for each statistic represents highest stability

Si
1: the mean of the absolute rank differences of a genotype across environments

Si
2: represents variance of ranks across environments

Si
3 and Si

6: represent mean rank of each genotype (stability) (formulas differ)

KANG: Kang (1988) developed a rank-sum method, with genotypes with the highest
yield receiving the rank of 1 and the lowest estimated value of σ i

2 (Shukla’s stability
variance) receiving the rank of 1. The sum of the two ranks determines the final ranking
of genotypes. The genotype with the lowest sum is regarded as most desirable

KETRANK: proposed by Ketata et al. (1989). Plots mean rank across environments
against standard deviation of ranks for all genotypes
KETYIELD: also proposed by Ketata et al. (1989). Plots mean yield across
environments against standard deviation of yields for all genotypes
A genotype is regarded as stable if its KETRANK or KETYIELD is relatively consistent
across environments (low mean rank, i.e. high yield, and a low standard deviation)

FOXRANK: proposed by Fox et al. (1990). This stratified ranking technique was applied
to unadjusted means
Procedure scores the number of environments in which each genotype ranked in the
top, middle and bottom third. Genotypes found in the top third are regarded as well
adapted and stable

STAR: Flores (1993) proposed this method, in which a star is drawn for each genotype;
the length of each star represents mean yield in an environment
The largest and most regular polygon represents the highest-yielding and most stable
genotype

Table 15.1. Univariate parametric, univariate non-parametric and multivariate methods compared in
Flores et al. (1998).



Denis et al. (1996b) presented a number
of models that can account for hetero-
scedasticity in GE tables. They presented a
general scheme for describing heteroscedas-
ticity with a reduced number of parameters
using the mixed-model framework, which
allows new parsimonious models.

Since the 1970s, various attempts have
been made to jointly capture the effects of G
and GE interaction. Simultaneous selection
for yield and stability of performance is
an important consideration in breeding
programmes. No methods developed so far
have been universally adopted. Flores et al.

(1998) compared 22 univariate and multi-
variate methods to analyse GEI. Additional
information on each method is provided in
Table 15.1. These 22 methods were classi-
fied into three main groups (Flores et al.,
1998): in group 1, statistics are mostly
associated with yield level and show little
or no correlation with stability parameters;
in group 2, both yield and stability of per-
formance are considered simultaneously to
reduce the effect of GEI; and group 3 empha-
sizes only stability. Group 1 includes YIELD,
PI, UPGMA, FOXRANK and FOXROS; group
2 includes S6O, PPCC, STAR, AMMI and
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Type Statistics included

Multivariate
methods

UPGMA: unweighted pair-group arithmetic mean (Sokal and Michener, 1958).
Genotypes are clustered via a dissimilarity matrix of squared Euclidean distance and an
UPGMA method fusion strategy
If a check cultivar is included in a trial, it can be used as a benchmark for other
genotypes in the same trial (Lin and Binns, 1985)
Gadheri et al. (1980) proposed to conduct an ANOVA at various truncation points and to
determine the level at which mean squares within groups are not significantly greater
than the estimated error. This method is laborious

LIN: cluster analysis proposed by Lin (1982). It is a dissimilarity measure for a pair of
genotypes (estimated as the squared distance between them adjusted for the average
effects of genotypes)
Involves calculation of genotype by environment interaction at each fusion cycle

FOXROS: proposed by Fox and Rosielle (1982). Genotypes are clustered via a
dissimilarity matrix of squared Euclidean distance and an incremental sum-of-squares
fusion strategy

AMMI: Zobel et al. (1988) proposed the additive main effects and multiplicative
interaction (AMMI) model to partition GEI. Provides a biplot and gives information on
main effects and interactions of genotypes and environments
Genotypes with first principal-component axis value close to zero indicate general
adaptation to environments

PPCC: the principal coordinate analysis proposed by Westcott (1987)
Analysis is based on genotype means for each environment, starting with the
lowest-yielding environment. Environments are added to the data set in ascending order
of yield. Stable and high-yielding genotypes consistently show above-average
performance

CA: correspondence analysis simultaneously represents genotypes and environments.
It involves choosing of scores that maximize correlation of rows and columns. A variant
of principal-component analysis
A genotype is regarded as stable if its first and second correspondence-analysis scores
are near zero (Lopez, 1990)

YIELD: used as a reference

ANOVA, analysis of variance.

Table 15.1. Continued.



KANG; and group 3 includes TAI, LIN, CA,
SHUKLA and EBRAS.

Hussein et al. (2000) provided a com-
prehensive statistical analysis system (SAS)
program for computing univariate and
multivariate stability statistics for balanced
data. Their program provides estimates of
more than 15 stability-related statistics.

Path coefficient analysis has been
effectively used to investigate GEI in
potato by Tai and Coleman (1999). The
path analysis has not found much favour
with most researchers. Nevertheless, Tai has
expounded on the merits of this method
(Tai, 1990).

Piepho (2000b) proposed a mixed-
model method to detect QTL with signifi-
cant mean effect across environments and to
characterize the stability of effects across
multiple environments. He treated environ-
ment main effects as random, which meant
that both environmental main effects and
QTL–environment interaction effects could
be regarded as random.

Biadditive factorial regression models,
which encompass both factorial regression
and biadditive (additive main effect and
multiplicative interaction (AMMI)) models,
have also been evaluated (Brancourt-Hulmel
et al., 2000). The biadditive factorial regres-
sion models involved environmental
covariates related to each deviation and
included environmental main effect, sum
of water deficits, an indicator of nitrogen
stress, sum of daily radiation, high tem-
perature, pressure of powdery mildew and
lodging (Brancourt-Hulmel et al., 2000). The
models explained about 75% of the interac-
tion sum of squares. The biadditive factorial
biplot provided relevant information about
the interaction of the genotypes with respect
to environmental covariates.

The biplot method originated with
Gabriel (1971). Others have used this
method in describing GEI. The versatility
of the GGE (G = genotype effect and GE =
genotype–environment effect) biplot has
only recently been elucidated (Yan et al.,
2000). The GGE biplot approach has
captured the imagination of plant breeders
and production agronomists like no other
approach ever has.

In addition to dissecting genotype-by-
environment interactions, GGE Biplot helps
analyse genotype-by-trait data, genotype-
by-marker data, and diallel cross data (Yan
et al., 2000, 2001; Yan, 2001; Yan and Hunt,
2001, 2002; Yan and Rajcan, 2002). These
aspects make the GGE biplot a most compre-
hensive tool in quantitative genetics and
plant breeding (see Yan and Hunt, Chapter
19, this volume).

Causes of Genotype–Environment
Interaction

To be able to understand GEI and utilize it
effectively in breeding programmes, infor-
mation is needed on the factors responsible
for the differential response of genotypes
to variable environments. A factor may be
present at optimal, suboptimal or super-
optimal levels. When present at a level
other than optimal, it represents a stress.
According to Baker (1988), differences in
the rate of increase in response of genotypes
at suboptimal levels would reflect differ-
ences in efficiency, and differences in the
rate of decrease at superoptimal levels
would reflect differences in tolerance.
Without the presence of stresses, genotype
attributes, such as efficiency and tolerance,
cannot be identified and investigated. In
this section, the effects of environmental
stress on the plant genome in general and
biotic and abiotic factors that may be
responsible for GEI are considered.

Environmental effect on genome

An understanding of plant stress responses
is essential because of predicted global
environmental changes and their impact on
the production of food and fibre. Stress
is a physiological response to an adverse
environmental factor(s). Plants respond to
a variety of environmental cues: nutrients,
toxic elements and salts in the soil solution,
gases in the atmosphere, light of different
wavelengths, mechanical stimuli, gravity,
wounding, pests, pathogens and symbionts
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(Crispeels, 1994). Plants have incorporated
a variety of environmental signals into their
developmental pathways that have provided
for their wide range of adaptive capacities
over time (Scandalios, 1990).

Environmental stresses have been shown
to elicit specific responses at the DNA level in
a number of organisms. A differentiated cell
expresses an array of genes required for its
stable functioning and metabolic roles (Scan-
dalios, 1990). In response to severe environ-
mental changes, a genome can respond by
selectively regulating (increasing or decreas-
ing) the expression of specific genes.

Interspecific variation in DNA amounts
is correlated with various quantitative prop-
erties of cells, and these may secondarily
affect the quantitative characters of the
whole plant (Bachmann et al., 1985;
Cavalier-Smith, 1985a,b; Bennett, 1987).
Highly significant differences of up to 32%
in DNA content were found in meristems
of seedlings from 35 natural populations of
hexaploid Festuca arundinacea (Ceccarelli
et al., 1992). In cultivated maize, variation
in genome size has been reported to be as
high as 38.8% (Laurie and Bennett, 1985;
Rayburn et al., 1985). Maize lines from
higher latitudes of North America had sig-
nificantly lower nuclear DNA amounts than
those from lower latitudes (Rayburn et al.,
1985). Rayburn and Auger (1990) deter-
mined the nuclear DNA content of 12 south-
western US maize populations collected at
various altitudes and observed a significant
positive correlation between genome size
and altitude. Higher amounts of DNA at
higher elevation have also been found in
teosinte (Laurie and Bennett, 1985).

Herrera-Estrella and Simpson (1990)
investigated the influences of environmen-
tal factors on genes involved in photosynthe-
sis. The mechanism of regulation may vary
from one species to another (Herrera-Estrella
and Simpson, 1990).

Biotic stresses

Biotic stress factors are a major limitation to
plant productivity and a dominant element

in plant ecology and evolution (Higley
et al., 1993). Biotic stresses and interactions
among them and/or with abiotic factors
remain poorly understood; however, they
have significant relevance to GEI in plants.

Plants may respond to pathogen infec-
tion by inducing a long-lasting, broad-
spectrum, systemic resistance to subsequent
infections (Ryals et al., 1994). Induced
disease resistance has been referred to as
physiological acquired immunity, induced
resistance or systemic acquired resistance
(SAR). Differences in insect and disease res-
istance among genotypes can be associated
with stable or unstable performance (Baker,
1990).

Abiotic stresses

The major abiotic stresses are atmospheric
pollutants, soil stresses (salinity, acidity
and mineral toxicity and deficiency), tem-
perature (heat and cold), water (drought
and flooding) and tillage operations (Blum,
1988; Clark and Duncan, 1993; Specht and
Laing, 1993; Unsworth and Fuhrer, 1993).
Genetic variation exists for plant responses
to the above stress factors. Breeding for
tolerance to air pollutants has considerable
potential (Unsworth and Fuhrer, 1993).

With stress caused by suboptimal levels
of water, nutrients and solar radiation, it
should be possible to identify genotypes
that are efficient or inefficient in using
the respective resource. Woodend and Glass
(1993) demonstrated the presence of GEI for
potassium-use efficiency in wheat.

Responses to temperature

Rapid temperature changes, particularly
those toward the upper end of the adapta-
tion range for individual plant species, can
produce dramatic changes in the pattern of
gene expression. Heat-shock responses are
plants’ protective measures against poten-
tially lethal, rapid-rate, upward departures
from the optimal temperature (Pollack
et al., 1993). Tolerance of protein synthesis
and seedling growth to a previously lethal
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high temperature can be induced by prior
short exposure to a sublethal high tempera-
ture that triggers the synthesis of a specific
set of proteins – the heat-shock proteins
(HSPs) – via mRNA that is newly tran-
scribed in response to high temperature.
In the meantime, the synthesis of normal
cellular proteins is reduced or shut down.
This process is detectable within minutes of
the onset of stress (Ougham and Howarth,
1988). HSPs are induced at different tem-
peratures in different species. The rule of
thumb is that temperature must be ~10°C
higher than the optimal temperature for a
particular species.

Oxidative stress

A common feature of different stress factors
is an increased production of reactive oxy-
gen species in plant tissues, but their mode
of action varies depending on whether
oxidants are generated outside (e.g. by
oxidizing air pollutants) or inside (e.g. high
radiation, low temperatures or nutrient
deficiency) a plant cell (Polle and Rennen-
berg, 1993). It is important to understand
both the mode of action of different stress
factors and the critical physiological prop-
erties that limit ameliorative mechanisms at
the subcellular level (Polle and Rennenberg,
1993).

Scandalios (1990) summarized plant
responses to environmental stress, pointing
out that activated oxygen species (endo-
genous – by-products of normal metabolism
– and exogenous – triggered by environmen-
tal factors) were highly reactive molecules
capable of causing extensive damage to plant
cells. The effects of oxidative stress can
range from simple inhibition of enzyme
function to the production of random lesions
in proteins and nucleic acids and the
peroxidation of membrane lipids. Loss of
membrane integrity can cause decreased
mitochondrial and chloroplast functions,
which, in turn, can lower the plant’s ability
to fix carbon and to properly utilize the
resulting products (Scandalios, 1990). This
decrease in metabolic efficiency results in
reduced yield.

How to Deal with GEI

The presence of crossover interactions has
important implications for breeding strate-
gies that aim to improve either broad or
specific adaptation or some combination
of both components of adaptation (Cooper
et al., 1999). Eisemann et al. (1990) listed
three ways of dealing with GEI in a breeding
programme: (i) ignoring them, i.e. using
genotypic means across environments even
when GEI exists; (ii) avoiding them; or (iii)
exploiting them. Interactions should not be
ignored when they are significant and of the
crossover type.

The second way of dealing with these
interactions, i.e. avoiding them, involves
minimizing the impact of significant inter-
actions. One approach is to group similar
environments (forming mega-environments)
via a cluster analysis. With environments
being more or less homogeneous, genotypes
evaluated in them would not be expected to
show crossover interactions. By clustering
environments, potentially useful informa-
tion may be lost. International research cen-
tres, such as the International Maize and
Wheat Improvement Center (CIMMYT), aim
to identify maize and wheat genotypes with
broad adaptation (i.e. stable performance
across diverse environments) at many inter-
national sites. Such an objective cannot
be achieved by restricting (clustering) test
environments.

The third approach encompasses
stability of performance across diverse
environments by analysing and interpreting
genotypic and environmental differences.
This approach allows researchers to select
genotypes with consistent performance,
identify the causes of GEI and provide the
opportunity to correct the problem. When
the cause for the unstable performance of a
genotype is known, either the genotype can
be improved by genetic means or a proper
environment (inputs and management) can
be provided to enhance its productivity.

A genotype that performs consistently
(high-yielding) across many environments
would possibly possess broad-based, dura-
ble resistances/tolerances to the biotic and
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abiotic environmental factors that it encoun-
tered during development. The more the
breeders know about the crop environment,
the better job they can do of judiciously tar-
geting appropriate cultivars to production
environments.

In the next section, the concepts of
stability are presented. A methodology for
identifying stable genotypes and environ-
mental factors that may be responsible for
stable or unstable performance is also given.

Concepts of stability

Stability is a central keyword for plant
breeders analysing GE data. A simple
corresponding statistical term is ‘dispersion
around a central value’ (Denis et al., 1996a).
There are two concepts of stability: static
and dynamic. The static concept means that
a genotype has a stable performance across
environments and there is no among-
environment variance. This would mean
that a genotype would not respond to high
levels of inputs, such as fertilizer. This type
of stability would not be beneficial for
the farmer, and it has been referred to as
the biological concept of stability (Becker,
1981), which is equivalent to Lin et al.’s
(1986) type 1 stability. In type 1 stability, a
genotype is regarded as stable if its among-
environment variance is small.

The dynamic concept means that a
genotype has a stable performance, but, for
each environment, its performance corre-
sponds to the estimated level or predicted
level. There would be agreement between
the estimated or predicted level and the
level of actual performance (Becker and
Leon, 1988). This concept has been referred
to as the agronomic concept (Becker, 1981),
which is equivalent to Lin et al.’s (1986) type
2 stability. In type 2, a genotype is regarded
as stable if its response to environments
is parallel to the mean response of all
genotypes in a test.

Lin et al. (1986) defined four groups of
stability statistics. Group A is based on devi-
ation from the average genotype effect (DG),
group B on the GEI term (GEI) and groups C

and D on either DG or GEI. The formulae of
groups A and B represent sums of squares
and those of groups C and D represent
a regression coefficient or deviation from
regression. They integrated type 1, type 2
and type 3 stabilities with the four groups:
group A was regarded as type 1, groups B and
C as type 2, and group D as type 3 stability.
In type 3 stability, a genotype is regarded
as stable if the residual mean square from
the regression model on the environmental
index is small (Lin et al., 1986). Lin and
Binns (1988) proposed the type 4 stability
concept on the basis of predictable and
unpredictable non-genetic variation: the
predictable component is related to loca-
tions and the unpredictable component
is related to years. Lin and Binns (1988)
suggested the use of a regression approach
for the predictable portion and the mean
square for years within locations for each
genotype as a measure of the unpredictable
variation. The latter was called the type 4
stability statistic.

Stability statistics

Plant breeding can exploit wide adaptation
by selecting genotypes that yield well
across large geographical areas or mega-
environments (Witcombe, 2001). Mega-
environments are broad (frequently dis-
continuous transcontinental) areas that are
characterized by similar biotic and abiotic
stresses, cropping-system requirements and
consumer preferences (Witcombe, 2001).
Several methods have been developed to
analyse GEI and to select genotypes that
perform consistently across many environ-
ments (Lin et al., 1986; Becker and Leon,
1988; Kang, 1990; Kang and Gauch, 1996;
Weber et al., 1996). The earliest approach
was the linear regression analysis (Mooers,
1921; Yates and Cochran, 1938). Finlay and
Wilkinson (1963), Eberhart and Russell
(1966) and Tai (1971) popularized varia-
tions of the regression approach, assuming
an expected linear response of yield to
environments. The merits and demerits of
several methods were discussed by Kang
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and Miller (1984). Kang et al. (1987b)
concluded that Shukla’s (1972) stability
variance and Wricke’s (1962) ecovalence
were equivalent methods and they ranked
genotypes identically for stability (rank cor-
relation coefficient = 1.00). These types of
measures are useful to breeders and agrono-
mists, as they provide the contribution of
each genotype to total GEI. They can also
be used to evaluate testing locations by
identifying those locations with a similar
GEI pattern (Glaz et al., 1985). Other statisti-
cal methods that have received significant
attention are pattern analysis (DeLacy et al.,
1996), the AMMI model (Gauch and Zobel,
1996), the shifted multiplicative model
(SHMM) (Cornelius et al., 1996; Crossa
et al., 1996), the non-parametric methods of
Hühn (1996), which are based on cultivar
ranks, the probability of outperforming a
check (Eskridge, 1996) and Kang’s rank-sum
method (Kang, 1988, 1993b). The methods
of Hühn (1996) and Kang (1988, 1993b)
integrate yield and stability into one statis-
tic that can be used as a selection criterion.

Dashiell et al. (1994) evaluated the
usefulness of several stability statistics for
simultaneously selecting for high yield and
stability of performance in soybean. Fern-
andez (1991) also evaluated stability statis-
tics for similar purposes. Recently, Flores
et al. (1998) and Hussein et al. (2000) con-
ducted comparative evaluations of 22 and 15
stability statistics/methods, respectively.

Simultaneous selection for yield and stability

Growers would prefer to use a high-yielding
cultivar that performs consistently from year
to year (temporal adaptation) and might be
willing to sacrifice some yield if they are
guaranteed, to some extent, that a cultivar
would produce consistently from year to
year (Kang et al., 1991).

Kang (1993b) discussed the motivation
for emphasizing stability in the selection
process. He enumerated the consequences to
growers of researchers’ committing type I

(rejecting the null hypothesis when it is true)
and type II errors (accepting the null hypo-
thesis when it is false) relative to selection
on the basis of yield alone (conventional
method (CM)) and that on the basis of yield
and stability. Simultaneous selection for
yield and stability reduces the probability of
committing type II errors (probability = β).
Generally, type II errors constitute the most
serious risk for growers (Glaz and Dean,
1988; Johnson et al., 1992). The combined
rate of committing a type II error for simulta-
neous selection for yield and stability will be
the product of β for comparisons of overall
yield mean and β for comparisons of GEI
means.

Several methods of simultaneous selec-
tion for yield and stability and relationships
among them were discussed by Kang and
Pham (1991). The development and use
of the yield–stability statistic (YSi) demon-
strated the significance and rationale of
incorporating stability in selecting geno-
types tested across a range of environments
(Kang, 1993b). A QBASIC computer pro-
gram (STABLE) for calculating this statistic
was developed and is available free of charge
(Kang and Magari, 1995).

The stability component in YSi is
based on Shukla’s (1972) stability-variance
statistic (σi

2). Shukla (1972) partitioned
GEI into components, one corresponding to
each genotype, and referred to it as stability
variance. Lin et al. (1986) classified σi

2 as
type 2 stability, meaning that it was a relative
measure dependent on genotypes included
in a particular test. Pazdernik et al. (1997)
analysed soybean seed yield, protein and oil
concentrations and stability statistics. They
concluded that Hühn’s rank-based Si

1 and Si
2

statistics and Kang’s YSi statistic could be
used by breeders to select parents to improve
protein concentration and stability by com-
bining stable high-yielding lines with stable
high-protein lines. They further suggested
that the same statistics could be used by
consultants and variety-testing personnel to
aid in making recommendations to soybean
producers.
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Covariates and stability

Yield stability or GEI for yield is a complex
issue. Yield stability depends on plant
characteristics, such as resistance to pests
and tolerance to environmental stress fac-
tors. By determining factors responsible for
GEI or stability/instability, breeders can
improve cultivar stability. If instability was
caused by susceptibility to a disease, breed-
ing for resistance to that disease should
reduce losses in disease-inducing environ-
ments and increase genotype stability.

It is important to know the underlying
causes of GEI (Kang, 1998; Haji and Hunt,
1999). An observational description of GEI
is not very useful unless one knows the
elements that cause the environmental dif-
ferentiation (Federer and Scully, 1993). The
use of environmental variables as covariates
was suggested and/or employed by several
researchers (Freeman and Perkins, 1971;
Hardwick and Wood, 1972; Shukla, 1972;
Wood, 1976; Kang and Gorman, 1989; van
Eeuwijk et al., 1996; Piepho et al., 1998).
Individual components of the environment
(rainfall, temperature, fertility, etc.), used
as covariates in explaining GEI, can greatly
increase the reliability of predictions rela-
tive to cultivar performance. Environmental
characterization can be achieved directly, by
measuring environmental variables, which
can be physical, biological or nutritional, or
indirectly, by measuring plant responses
to capture the influence of environmental
conditions on plant performance (Brancourt-
Hulmel et al., 2000). Winter-wheat data
from Ontario revealed that January tempera-
tures, together with moisture supply before
anthesis, were associated with some of the
GEIs (Haji and Hunt, 1999).

A fertility score was used as an environ-
mental covariate in Germany (Piepho,
2000a). This score, ranging between 0 and
100, incorporates several variables, includ-
ing soil type and the geological age of parent
material. Piepho (2000a), who provided con-
fidence limits for estimated risks, argued
that, if yield depends on environmental
covariates, risk for a specific environment
can be estimated on the basis of covariate

information, thus yielding a more specific
risk assessment.

Methods of assessing the contributions
of weather variables and other factors
(covariates) that contribute to GEI are
available (Shukla, 1972; Denis, 1988; van
Eeuwijk et al., 1996; Magari et al., 1997).
Contributions of different environmental
variables to GEI have been reported by
several researchers (Saeed and Francis,
1984; Gorman et al., 1989; Kang and
Gorman, 1989; Kang et al., 1989; Rameau
and Denis, 1992). Additional reports have
appeared on the use of covariates in the past
5 years (Magari et al., 1997; Vargas et al.,
2001; Yan and Hunt, 2001).

In the following linear model, GEI is
explained in terms of the covariate used, as
shown by Shukla (1972):

Yijk = µ + αi + θij + βk + bkzi + εijk (15.1)

where Yijk = observed trait value, µ = grand
mean, αi = environmental effect, θij = blocks
within environments effect, βk = cultivar
effect, bk = regression coefficient of the kth
genotype’s yield in different environments,
zi = an environmental covariate and εijk =
experimental error.

When a number of environmental
variables are considered, the combination of
two or more variables would remove more
heterogeneity from GEI than individual
variables do. Methods developed by van
Eeuwijk et al. (1996) may be helpful for this
purpose. Magari et al. (1997) identified
precipitation as the single most important
environmental factor that contributed to GEI
for ear-moisture loss rate in maize. They
identified precipitation + growing degree-
days from planting to black-layer maturity
(GDD-BL) and relative humidity + GDD-BL
as the two-factor combinations that
explained larger amounts of GEI.

Vargas et al. (2001) found the most
important variables that explained nitrogen
(N)–year interaction to be minimum tem-
perature in January–March and maximum
temperature in April. Evaporation rates
for December and April were important
covariates for describing tillage–year and
summer crop–year interactions, whereas
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precipitation in December and sun hours
in February explained year–manure inter-
action (Vargas et al., 2001).

Stability variance for unbalanced data

Plant breeders often deal with unbalanced
data. Searle (1987) classified unbalanced-
ness as planned unbalanced data and
missing observations. Both categories of
unbalancedness may occur, but planned
unbalancedness (a situation when, for
different reasons, one does not have data for
all genotypes in all environments) is more
difficult to handle. Researchers have used
different approaches for studying GEI in
unbalanced data (Freeman, 1975; Pedersen
et al., 1978; Zhang and Geng, 1986; Gauch
and Zobel, 1990; Rameau and Denis, 1992;
Piepho, 1994). Usually environmental
effects are considered as random and
cultivar effects as fixed. Inference on
random effects using least squares, in the
case of unbalanced data, is not appropriate
because information on variation among
random effects is not incorporated (Searle,
1987). For this reason, mixed model
equations (MMEs) are recommended
(Henderson, 1975).

The values of Shukla’s (1972) σi
2 can be

negative because they are calculated as the
differences of two statistically dependent
sums of squares, which is a negative feature
of this approach. Computation of σi

2 is
impossible from unbalanced data, but
genotypek–environment variance compo-
nents (σ2

g(k)e) can be estimated using the
maximum likelihood approach. The general
linear model for randomized complete-
block-design experiments conducted in
different environments is:

Yijk = µ + αi + θij + βk + γik + εijk (15.2)

Using matrix notation, Equation (15.2) can
be written as:

y = 1µ + Xβ + Wα + Uθ + ΣkZkak + ε (15.3)

where y = vector of observed yield data,
1 = vector of ones, X = design matrix for
fixed effects (genotypes), β = vector of

genotype effects, W and α are, respectively,
a design matrix for and a vector of environ-
mental effects, U and θ are, respectively, a
design matrix for and a vector of replica-
tions within environment effects, Zk and ak

are, respectively, a design matrix for and
a vector of GEI effects and ε is the vector
of residuals. Equation (15.3) can be solved
using Henderson’s (1975) MME. The levels
of random factors are generally assumed to
be independent.

The restricted maximum-likelihood
(REML) methodology is generally preferred
to maximum-likelihood estimates because it
considers the degrees of freedom for fixed
effects for calculating error. The calculation
of REML stability variances for unbalanced
data allows one to obtain a reliable estimate
of stability parameters, and overcomes the
difficulties of manipulating unbalanced data
(Kang and Magari, 1996).

Testing and Breeding Strategies

The best approach for breeders and geneti-
cists would be to understand the nature and
causes of GEI and to try to minimize its
deleterious implications and exploit its
beneficial potential through appropriate
breeding, genetic and statistical methodolo-
gies (Kang and Gauch, 1996). Appropriate
analyses of data can provide an opportunity
for exploiting GEI using applied analytical
methods, such as AMMI, the use of climatic
factors in explaining GEI and the evaluation
of risk of production and the optimal alloca-
tion of land resources to various genotypes
for selection in heterogeneous environments
(Singh et al., 1999). Some of the important
strategies for accomplishing this are out-
lined below.

Breeding for resistance/tolerance to stresses

Resistance or tolerance to any type of stress,
biotic or abiotic, is essential for stable
performance (Khush, 1993; Duvick, 1996).
Sources of increased crop productivity
include enhanced yield potential, heterosis,
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modified plant types, improved yield
stability, gene pyramiding and exotic and
transgenic germ-plasm (Khush, 1993). It is
important to identify the factor(s) that are
responsible for GEI. If interaction is caused
by European corn-borer (ECB) damage, a
gene conferring resistance to ECB (e.g. the
Bt gene) could be inserted into one of
the two inbred parents of the susceptible
genotype.

Brancourt-Hulmel (1999) used crop
diagnosis with the analysis of interaction
by factorial regression in wheat. She pro-
vided an agronomic explanation of GEI and
defined responses or parameters for each
genotype and each environment. Earliness at
heading, susceptibility to powdery mildew,
and susceptibility to lodging were the major
factors responsible for GEI. In the same study
(Brancourt-Hulmel, 1999), factorial regres-
sion revealed that water deficits during the
formation of grain number and N level also
were associated with GEI.

To alleviate GEI concerns caused by
stresses, breeders need to know as much
about the various characteristics of geno-
types as possible. They also need to charac-
terize environments as fully as possible.
Knowledge of soil characteristics and ranges
of weather variables and stresses that plant
materials will be exposed to is a prerequisite
to exploiting the beneficial potentials of
the genotypes and environments and to
targeting appropriate cultivars to specific
environments.

Economically important characters in
crop species are generally quantitative
in nature. For improving quantitative traits,
breeders need to know what genetic factors
are involved, where they are located on
chromosomes and what type of inheritance
they exhibit. Recent advances in molecular
genetics have provided some of the best tools
for obtaining insights into the molecular
mechanisms associated with GEI. Molecular
markers, such as restriction fragment length
polymorphisms (RFLPs), can be employed
to find genomic regions with stable responses.
Molecular markers have paved the way for
investigating the QTL–environment inter-
action (QEI) (Beavis and Keim, 1996), which
will ultimately provide a better genetic

understanding and possible regulation of
this phenomenon. Regions of plant genomes
that provide stable responses across diverse
environments can be identified by deter-
mining the linkage of QTL to RFLPs, which
should make it possible for breeders to
manipulate QTL in the same fashion as
single genes that control qualitative traits.
Wang et al. (1999) reported a new methodol-
ogy based on mixed linear models to map
QTL with digenic epistasis and QEIs. Reli-
able estimates of QTL main effects (additive
and epistatic effects) can be obtained with
the maximum-likelihood estimation method,
and QEI effects (additive–environment inter-
action and epistatic effects–environment
interaction) can be obtained with the best
linear unbiased prediction (BLUP) method
(Wang et al., 1999).

It is highly desirable to identify QTL
for a complex trait (say, high yield) that
is expressed in a number of environments.
Crossa et al. (1999) found that higher maxi-
mum temperature in low- and intermedi-
ate-altitude sites affected the expression of
some QTL, whereas minimum temperature
affected the expression of other QTL, in
tropical maize. Jiang et al. (1999) used
molecular markers to investigate adaptation
differences between highland and lowland
tropical maize. They concluded that breed-
ing for broad thermal adaptation should
be possible by pooling genes showing
adaptation to specific thermal regimes,
albeit at the expense of reduced progress
for specific adaptation. Molecular marker-
assisted selection would be an ideal tool for
this task because it could reduce linkage
drag caused by the unintentional transfer of
undesirable traits (Jiang et al., 1999).

Breeding for stability/reliability
of performance

Evans (1993) pointed to the need for devel-
oping new cultivars with broad adaptation
to a number of diverse environments
(selection for adaptability) and to the need
of farmers to use new cultivars with reliable
or consistent performance from year to year
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(reliability). Smith et al. (1990) pointed out
that genetic improvement for low-input
conditions would require capitalizing on
GEI and that slower or limited gains in
low-input or stress environments suggested
that conventional high-input management
of breeding nurseries and evaluation trials
might not effectively select genotypes with
improved performance at low-input levels.
This viewpoint is also highlighted by
Ceccarelli et al. (2001). Because of the suc-
cesses in favourable environments, plant
breeders have tried to solve the problems of
poor farmers living in unfavourable envi-
ronments by simply extending the same
methodologies and philosophies applied
to favourable, high-potential environments,
without considering the possible limita-
tions associated with the presence of a large
GEI (Ceccarelli et al., 2001). Selection in
good environments is favoured because it is
believed that heritabilities are higher there
than in poor environments (Blum, 1988).
Singh and Ceccarelli (1995) suggested, how-
ever, that there was no relationship between
yield level and magnitude of heritability.
Rosielle and Hamblin (1981) examined
theoretical aspects of selection for yield in
stress and non-stress environments. They
showed that selection for tolerance to stress
generally reduced mean yield in non-stress
environments and that selection for mean
productivity generally increased mean
yields in both stress and non-stress environ-
ments. Bramel-Cox (1996) reviewed relevant
literature on breeding for reliability of per-
formance in unpredictable environments.

To be reliable, a stability statistic must
be based on a large number of environments
(more than ten). Information on stability can
usually be obtained in the final stages of a
breeding programme, when replicated tests
are conducted. From the standpoint of indi-
vidual growers, stability across years (tem-
poral) is most important. A breeder could
test cultivars or lines for 10–15 years and
identify those that have temporal stability.
Crosses could then be made among the most
stable cultivars to develop source material
(germ-plasm) that would be utilized for
developing inbred lines or pure lines.

Therefore, extensive cultivar testing across
years is a precursor to cultivar development.

Stability of cultivars would be
enhanced if multiple resistances/tolerances
to stress factors were incorporated into the
germ-plasm used for cultivar development.
If every cultivar (different genotypes) pos-
sessed equal resistance/tolerance to every
major stress encountered in diverse target
environments, GEI would be reduced. Con-
versely, if genotypes possessed differential
levels of resistance (a heterogeneous group)
and, somehow, we could make all target
environments as homogeneous as possible,
GEI would again be reduced. Since we do
not have any control over unpredictable
environments from year to year, the best
approach would be the former.

Stability analyses can be used to iden-
tify durable resistance to disease pathogens
(Jenns et al., 1982). If a cultivar–pathogen-
isolate interaction exists, it would be neces-
sary to identify a cultivar that has general
resistance instead of specific resistance.

Kang et al. (1987a) examined whether
stability of one trait was correlated with
stability of another trait. If the stability
(stability variance, ecovalence or any other
stability statistic) of two traits were reason-
ably well, positively correlated, concurrent
selection for stabilities of the two traits
might be possible.

Measure interaction at intermediate
growth stages

A crop is exposed to variable environmental
factors throughout the growing season. Gen-
erally, researchers investigate the causes of
GEI at the final harvest stage. To critically
investigate GEI, one may need to record
environmental variables and plant-growth
measurements at weekly intervals. This
would help determine what effect, if any,
the environmental variables from an earlier
period had on GEI at intermediary stages
and on final yield. This may provide a
better understanding of the dynamic
process of yield formation.
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Early multienvironment testing

Usually, there is a shortage of seed at the
earliest stages of breeding, which prevents
extensive testing. However, in a clonally
propagated crop, such as sugarcane or
potato, one stalk of sugarcane or one tuber
of potato can be divided into at least two
pieces and planted in more than one envi-
ronment. Similarly, in other crops, if only
20 kernels are available, one could plant ten
seeds each in two diverse environments. In
the absence of a GEI, one would obtain a
better evaluation of the genotypes, but, if
GEI was present, one would obtain informa-
tion about the consistency or inconsistency
of performance of genotypes early in the
programme. This strategy would prevent
gene loss or genetic erosion, which could
occur if testing was done in only one
environment, and would also result in
an increased breeding effort without a
corresponding increase in expenditure of
resources.

Optimal resource allocation

GEI can be employed to judiciously allocate
resources in a breeding programme (Pandey
and Gardner, 1992; Magari et al., 1996).
Carter et al. (1983) estimated that, at a
low level of treatment–environment inter-
action (10% of error variance), testing in
at least two environments was necessary
to detect treatment differences of 20% and
it required at least seven environments to
detect smaller (10%) treatment differences
for growth-analysis experiments in soy-
bean. With a larger magnitude of inter-
action, a larger number of environments
would be needed for a given level of
precision in treatment differences.

Magari et al. (1996) used multienviron-
ment (different planting dates) data for ear-
moisture loss rate in maize, which exhibited
planting-date–genotype interaction. The rel-
ative efficiency for the benchmark protocol
(11 plants per replication, three replications
and three planting dates) was regarded as
the reference value (100%). The relative

efficiency for five plants per plot in four
replications and three planting dates was
equivalent to that for the benchmark proto-
col. A relative efficiency of 100% could also
be achieved with a sample of four planting
dates, three replications and three to four
plants per plot. When the number of replica-
tions was increased to four in each of four
planting dates, only two plants per plot were
needed to achieve a relative efficiency of
100%. The number of planting dates (envi-
ronments) was found to be a critical factor in
determining the precision of an experiment.

Future Prospects

With the increasing impact of molecular
biology on breeding and genetics, we are
at the dawn of molecular plant breeding.
Molecular approaches are being incorpo-
rated at various levels in crop-breeding
programmes. I expect that molecular
biology (including molecular genetics, bio-
chemistry and plant physiology) will play
an enhanced role in breeding crop species
and overcoming the constraints imposed on
genotypes by their interaction with envir-
onmental factors. For example, cloning of
genes for cold tolerance obtained from cold-
tolerant plant species and insertion of these
genes into cold-sensitive crop species could
overcome stress imposed by a cold climate
on the latter. Physiology will also increase
our knowledge of signal transduction in
plants in response to environmental cues.

The area of QEI has seen vigorous growth
in the past 10 years. This issue is expected to
continue to expand and further investiga-
tions will contribute to our understanding
of the complex relationship between crop
performance and the environment. Theory
for QEI has lagged behind, but progress is
being made in this area (Van Eeuwijk et al.,
Chapter 16, this volume). Applied research,
such as that of Moutiq et al. (Chapter 17, this
volume), will contribute much to the under-
standing of the QEI.

Statistical models for handling GEI data,
especially mixed-model analyses, are being
advanced. The work of Smith et al. (Chapters
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21 and 22, this volume) and Crossa and
Cornelius (Chapter 20, this volume) on
AMMI and sites regression model (SREG), of
Van Eeuwijk et al. (Chapter 16, this volume)
on regression and of Balzarini (Chapter 23,
this volume) on mixed models (best linear
unbiased estimate (BLUE) and BLUP) repre-
sent important trends for the future.

The GGE biplot technique, which has
been popularized by Yan and Hunt (Chapter
19, this volume), is a versatile statistical/
quantitative genetic methodology. GGE
biplot methods not only dissect GEI and QEI
but also aid in analysing genotype–trait
data, genotype–marker data and diallel-
cross data. The use of this methodology is
expected to expand worldwide in the next
decade.

Annicchiarico (Chapter 24, this volume)
proposes the use of artificial environments
to aid in selecting for adaptability. Accord-
ing to him, assessing the value of a specific
adaptation strategy has an obvious interest
for the globally orientated breeding pro-
grammes of large seed companies or inter-
national research centres. Fitting cultivars to
an environment, instead of modifying the
environment to fit widely adapted cultivars,
and safeguarding the biodiversity of culti-
vated material can contribute to food secu-
rity and enhance the effect of this strategy by
integrating participatory breeding schemes.

To ensure the stability of crop produc-
tion, the basic crop germ-plasm pools would
need to be broadened (Sperling et al., 2001).
I expect that there would be a greater
emphasis on participatory plant breeding,
which involves scientists, farmers, con-
sumers, extension personnel, industry and
others, in the future. The role of part-
icipatory plant breeding is expected to
expand, especially in developing countries.
This should help broaden the genetic base
of crops and stabilize food production as
a result of farmers’ developing, identifying
and using locally adapted crop varieties that
are farmer-acceptable and farmer-accessible.

Participatory plant breeding has not
received as much emphasis in Africa as it
has in Asia (Cromwell and Van Oosterhout,
2000), but it will receive an impetus in
the 21st century because it seeks to deliver

planting material that is closely in line with
farmers’ needs, more quickly than is pos-
sible through conventional plant breeding.
Participatory plant breeding can make a real
contribution to supporting farmers’ efforts
to maintain a wide range of crop varieties
on-farm (Cromwell and Van Oosterhout,
2000). Duvick (2002) envisions that the
farmer-breeders (acting either as individuals
or in associations, such as communities) and
their non-governmental organization (NGO)
partners would produce varieties with
utility in farming systems that are not well
served (or not served at all) by formal plant
breeding, either public or private. Decentral-
ization (participatory plant breeding) is
essential for exploiting specific adaptation
fully and making positive use of GEI
(Ceccarelli et al., 2001).
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Introduction

With the increasing omnipresence of marker
technology in plant breeding, the classical
problem of how to handle genotype–
environment interaction (GEI) is gradually
being absorbed into more basic questions
towards  the  existence  and  description  of
differential gene expression, where the
term ‘gene’ is replaced by ‘quantitative trait
locus’ (QTL). Because of this process, the
need has arisen for statistical models that
are applicable in the contexts of both GEI
and QTL–environment interaction (QEI).
This chapter attempts to develop a class
of statistical models that are useful for the
analysis of GEI as well as QEI.

For the analysis of GEI, the class of
factorial regression models has been shown
to be a powerful tool (Van Eeuwijk et al.,
1996). Taking the two-way analysis of vari-
ance (ANOVA) model as a departure point
for the description of genotype–environment
(GE) data, in factorial-regression models
variation due to main effects and interaction
is partitioned in parts due to regression on
covariables and deviations from regression.

In their most elementary form, factorial-
regression models are examples of the
application of contrasts in ANOVA. A
well-written general treatment of contrasts
in ANOVA can be found in Kuehl (2000). For
factorial regression, estimation and testing
take place within the framework of standard
least-squares theory and thus neither pres-
ent theoretical problems nor require special
software (Denis, 1988, 1991). For some
recent examples of applications of factorial
regression to GEI problems, see Vargas et al.
(1999) and Voltas et al. (1999a,b).

For the detection and localization of
QTL and the estimation of QTL effects, two
major approaches can be distinguished. A
computer-intensive, theoretically demand-
ing approach is built on mixture-model
theory within a maximum-likelihood frame-
work. An approximate alternative is based
on regression theory, where the predictors
are derived from the conditional probabili-
ties for specific QTL genotypes, given flank-
ing-marker information and the position of
the QTL relative to the flanking markers. A
good description of both approaches is given
by Lynch and Walsh (1998). Differences in

©CAB International 2002. Quantitative Genetics, Genomics and Plant Breeding
(ed. M.S. Kang) 245



results between the mixture-model approach
and the regression approach seem minor,
except for the case of closely linked or
interacting QTL (Kao, 2000). Therefore, we
would, in general, prefer regression-based
approaches to QTL analysis because compu-
tational requirements for this approach are
considerably less demanding. Furthermore,
inclusion of the statistical design and addi-
tional treatment structure in a QTL analysis
seems, a priori, easier within a regression
framework.

Theory for QTL detection and estima-
tion has developed strongly during the last
decade and a half. Application of this theory
has become somewhat of a routine issue in
breeding programmes. Still, theory for QEI
is scarce and applications of such theory are
few. Noteworthy contributions that empha-
size mixture-model approaches include,
among others, Jansen et al. (1995), Jiang and
Zeng (1995) and Korol et al. (1998). Some
recent uni- and multivariate regression-
based approaches, building on the work
by Haley and Knott (1992), were proposed
by, among others, Sari-Gorla et al. (1997),
Calinski et al. (2000) and Hackett et al.
(2001). Using the criteria of transparency
and simplicity of application, the methodol-
ogy developed by Sari-Gorla et al. (1997)
merits special attention. For QTL analysis in
recombinant inbred lines (RILs), they used
weighted least-squares regressions with F
tests for determining the presence of QTL
main effects and QEI. The problem of multi-
ple testing was elegantly addressed by a
sequentially rejective Bonferroni method.
Additional block and treatment terms were
incorporated without any problems. A for-
ward selection procedure was used for the
construction of a cofactor set in their variant
of composite interval mapping.

In this chapter, we present a method of
QTL analysis based on regression, which is
clearly inspired by the work of Sari-Gorla
et al. (1997). A first outline of this method
appeared in Van Eeuwijk et al. (2001). What
distinguishes our approach is, first, the close
connection of our models for QEI analysis
with factorial-regression models for GEI.
We see QEI analysis as a direct elaboration
of GEI analysis, and thus think that the

methods of analysis should be, if not the
same, at least very similar. As a complemen-
tary alternative to the sequentially rejective
Bonferroni procedure of testing for QTL
and QEI, we propose a randomization test
procedure, combining ideas of Manly (1997)
with those of Churchill and Doerge (1994).
We also propound a new method to capture
the effects of other QTL and background
genetic variation when searching for QTL
in composite interval mapping. The idea is
to refrain from choosing a limited number
of markers for membership of the cofactor
set by including all markers but penalizing
the corresponding regression coefficients in
order to sidestep collinearity problems. The
methodology will be illustrated by an
application to data from the drought- and
low-nitrogen-stress breeding programme of
the International Maize and Wheat Improve-
ment Center (CIMMYT).

Factorial Regression for Analysis of
Two-way Genotype–Environment Tables

For the expected response of a genotype i
(i = 1, . . . I) in an environment j (j = 1, . . . J),
we take the two-way ANOVA model as
a reference model µij = µ + Ej + Gi + GEij,
where Ej denotes the environmental main
effect, Gi the genotypic main effect and GEij

the two-way GEI. Errors are assumed to
be independent, of constant variance and
normal. Generalization to more complex
error structures would require a change
from standard least-squares regression to
weighted least squares. Following Denis
(1988, 1991) and the ANOVA module of
Genstat (1993), our preferred choice for
identification constraints of parameters is
‘sum-to-zero’ constraints over the running
indices.

In comparison with the reference
ANOVA model, the distinguishing charac-
teristic for factorial-regression models is
the introduction of one or more genotypic
covariables, xa (a = 1, . . . A), with values xia

and/or environmental covariables, zb (b = 1,
. . . B), with values zjb to partition main
effects and GEI of the ANOVA model. For
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example, Gi = xiaρa + Gi
*, where the geno-

typic main effect, Gi, is regressed on the
genotypic covariable xa, leading to a coeffi-
cient ρa and a residual genotypic effect, Gi

*.
By the same token, Ej can be replaced by
βbzjb + E j

*, where βb is a regression coeffi-
cient, zb an environmental covariable and
E j
* a residual environmental effect. Finally,

the interaction can be replaced by various
cross-products of parameters and covaria-
bles. First, the interaction term is split
in regressions per environment on the
genotypic covariable, xa: GEij = xiaρja + GEij

*,
where the interaction is described by
the differential environmental expression
parameters ρja. Secondly, an environmental
covariable, zb, is introduced: GEij = βibzjb +
GEij
*, and the interaction resides in the differ-

ences in genotypic sensitivity, βib. Finally,
the interaction is described by a one-
parameter cross-product term that contains a
regressor constructed from a cross-product
of a genotypic covariable with an environ-
mental covariable: GEij = κabxiazjb + GEij

*,
with κab being a scaling constant for the
cross-product xiazjb. Useful identification
constraints are again sum-to-zero con-
straints, where covariables must be centred
and genotypic parameter vectors must be
orthogonal to genotypic covariables, and the
same must be true for the environmental
parameter vectors and covariables (Denis,
1988, 1991). This parameterization can be
obtained by ensuring that every covariable
that is introduced in the model is made
orthogonal to all covariables already in the
model (Genstat, 1993). Of course, there is no
reason why more than one covariable cannot
be incorporated in the model, for example:

GE z GEij ib jb ij
b

B

= +
=

∑β *

1

Covariables may be quantitative or qual-
itative. In the case of qualitative covariables,
a grouping is imposed on genotypes or
environments. Quantitative examples of
genotypic covariables, xa, are disease- and
stress-resistance scores, whereas a qualita-
tive example is a classification of genotypes
on the basis of origin. For examples of
quantitative environmental covariables,
think of temperature, humidity, radiation

and number of sun hours, whereas year,
location and ecozone classifications are
examples of qualitative environmental
covariables. A catalogue of factorial regres-
sion models can be found in Van Eeuwijk
et al. (1996). In the context of this chapter,
we mention a special application of factorial
regression to the analysis of GEI in maize by
Crossa et al. (1999), where molecular-marker
scores were used as genotypic covariables.

Factorial-regression Models for
QTL Analysis

QTL analysis can be considered as an
application of factorial regression by inter-
preting this analysis as the partitioning of
the genotypic main effect, Gi, into a part due
to QTL and a residual:

G x Gi iq q i
q

Q

= +
=

∑ ρ *

1

where ρq stands for the QTL effect and xiq is
the value of the genetic predictor q for geno-
type i, which is a function of type of genetic
effect (additive, dominance, epistatic),
marker information (genotype) and position
within the genome. The number of QTL has
been set at Q. A similar partitioning for the
interaction leads to:

GE x GEij iq jq ij
q

Q

= +
=

∑ ρ *

1

where the QEI effects, ρjq, represent the
deviations from the QTL main effect, ρq.
An alternative parameterization, which par-
titions the joint effect of Gi + GEij in a part
due to environment-specific QTL and a
residual, is:

( ) ( )G GE G GE x G GEi ij ij iq jq ij
q

Q

+ = + = + +
=

∑ ρ *

1

A further step of analysis could be to regress
the QTL effects, ρjq, on an environmental
covariable, zb. For the environment-specific
QTL effects ρjq′ at position q′, this leads to:

x x z x z xiq jq iq q b jb jq q b iq jb iq j′ ′ ′ ′ ′ ′ ′ ′= +

 


 +ρ κ ρ κ ρ*

′q
*

where κq′b is a scaling constant for the
cross-product of genetic predictor xq′ and
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environmental covariable zb, while the para-
meters ρ jq′

* represent residual QTL effects.
In this way, direct links can be established
between phenotypic expression as induced
by identified chromosome regions and
environmental factors. A special situation
occurs when the environmental covariable
zb is taken as equal to the environmental
main effect, Ej. The resulting model is the
QTL equivalent of the classical regression
on the mean model for GEI that was pop-
ularized by Finlay and Wilkinson (1963).
In the QTL context, this model was first
suggested by Korol et al. (1998).

The particularity of QTL analysis
within a factorial-regression framework
resides in the construction of the genetic
predictors xq. Let the marker genotypes at a
specific marker locus be MM, Mm and mm.
For an additive QTL effect appearing at this
locus, the corresponding genetic predictor
values, xiq

add , would be 1, 0 and −1, respec-
tively, whereas, for a dominance QTL effect,
the genetic predictor values, xiq

dom , would
read 0, 1 and 0, respectively. When these
genetic predictors at marker positions have
been constructed, one can perform a simple
form of QTL analysis, namely QTL map-
ping by marker regression. More powerful
methods of QTL analysis, like simple and
composite interval mapping, also require
values for the genetic predictors in between
marker positions. Here, the additive genetic
predictors are constructed as the difference
between the conditional probability of
the QTL genotype being QQ versus the
conditional probability of it being qq. The
conditioning is on the flanking marker
genotypes and the evaluation position
inside the marker bracket. The dominance
predictor then follows from the conditional
probability for the heterozygote genotype,
Qq. Explicit expressions for the construction
of these genetic predictors can be found in
many papers and books. We mention the
seminal paper of Haley and Knott (1992) for
the construction of F2-related predictors
and Lynch and Walsh (1998) for a general
description of the principles. A most useful
paper in this context is Jiang and Zeng
(1997), which describes algorithms for the
construction of genetic predictors for many

types of populations, with dominant and
codominant markers and allowing for
missing marker information.

Estimation and Testing for QTL and
QEI in Factorial Regression

As remarked, the factorial regression model
is a simple linear regression model, for
which parameter estimation is typically
done by ordinary least-squares procedures.
A natural choice to test for the presence of
QTL main effects and QEI effects at a partic-
ular position would be to use an F test like
that used for testing contrasts in two-way
ANOVA, where the contrasts for QTL main
effect and QEI are defined by the values of
the genetic predictors (additive and domi-
nance) at that position. The numerator of
these tests will contain the mean square due
to regression on the genetic predictor(s). For
the denominator, various options exist.
One option is to base the denominator
mean square on the mean or median of the
intrablock error estimates of the individual
trials. Another option is to use the devia-
tions from the regressions on the genetic
predictors.

Whichever choice is made, for QTL
analyses there will always remain the prob-
lem of multiple testing. Genetic predictors
are constructed at small intervals along the
chromosomes and at each position a test for
QTL presence will be performed. Thus, the
genome-wide type I error should, in some
way, be controlled. An attractive, two-step
testing procedure was proposed by Sari-
Gorla et al. (1997). In the first step, a test is
carried out for the presence of a QTL at a
certain test position, t, by comparing the fit
of the model µij = µ + Ej + xitρjt with that
of the model µij = µ + Ej, i.e. a model with
environment-specific QTL is compared with
a model without QTL. The significance of
the resulting variance ratio is assessed by a
sequentially rejective Bonferroni procedure
or Holm’s simultaneous testing procedure
(Neter et al., 1996). The principle of this
procedure is as follows. First sort the P
values of the individual F tests at all
test positions from small to large. For N
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evaluation positions, the null hypothesis of
no environment-specific QTL is rejected as
long as the sorted P values are smaller than
α/(N − k + 1), where α is the genome-wide
level of test and k is the position of the P
value under test in the sorted vector of P
values. Thus the smallest P value is com-
pared with α/N, the second smallest with
α/(N − 1), the next with α/(N − 2), etc. In
the second step of the procedure, for those
positions at which the null hypothesis of no
environment-specific QTL was rejected, a
further test is performed for the existence of
QEI, the fit of the model µij = µ + Ej + xitρjt

is compared with that of the model
µij = µ + Ej + xitρt. As in the second step, only
a limited number of tests will be executed;
there is considerably less urgency for type I
error control.

An alternative test procedure, based on
randomization, is the following. To derive
the null distribution of test statistics for QTL
main effects and QEI, the vectors of genetic
predictors  over  marker  loci  per  offspring
(F2, RIL, etc.) are randomized with respect
to the vectors of phenotypic observations
across environments per offspring: that is,
all genetic information pertaining to a
specific offspring is kept together, just
like all the phenotypic information, but the
connections between the genetic and pheno-
typic vectors are broken. Next, test statistics
can be defined, such as variance ratios, LOD
scores or squared correlation coefficients.
For each randomization, the maximum
value of the test statistic across all evaluation
positions on the genome is stored. After a
sufficiently large number of randomizations,
the quantiles of the null distribution for
the test statistic can then be calculated, and
the P value of the original test statistic, as cal-
culated on the non-randomized data, can be
determined. This randomization procedure
extends, on the one hand, ideas of Manly
(1997) on randomization tests for two-way
ANOVA and multivariate regression and,
on the other hand, work by Churchill and
Doerge (1994) on controlling type I error in
randomization tests for QTL main effects.

The reason for using two test procedures
in our QTL analysis alongside each other
is that the sequentially rejective Bonferroni

procedure seems somewhat liberal, whereas
the randomization procedure seems some-
what conservative. Simulation work may
lead to clarification of this issue.

A Simple Correction for Genetic Effects
Elsewhere on the Genome

By correction for genetic effects elsewhere
on the genome, the power to detect QTL
at a particular position increases. A conve-
nient way for effecting this correction is by
including a number of markers, so-called
cofactors, close to putative QTL. The co-
factor set is usually assembled by regression
subset-selection strategies, such as stepwise
forward (e.g. Sari-Gorla et al., 1997) and
stepwise backward (e.g. Jansen and Stam,
1994). After the compilation of a cofactor
set, i.e. a set of putative QTL, in a second
round the whole genome is scanned again
for QTL, where an evaluation window
is chosen within which selected cofactors
are temporally deleted, while retaining all
cofactors outside the evaluation window.
This procedure is commonly referred to as
composite interval mapping. In the factorial
regression framework, it can be understood
as the comparison of the fit of the model
µ µ ρ ρij j im jm it jt

m C

E x x= + + +
∈

∑ with the fit of

µ µ ρij j im jm
m C

E x= + +
∈

∑ , where C designates

the set of cofactors.
The choice of the cofactor set depends

on the subset selection procedure that was
used. The quality of the correction for
genetic effects elsewhere on the genome,
following from the inclusion of a cofactor set
in the model, is dependent on the position
of the evaluation window under test. The
optimal cofactor set for a specific window
need not necessarily be the same as the total
of the selected markers across the whole
genome minus the selected markers inside
the test window. Also, the significance of
QTL effects can easily change by dropping or
including cofactors. Therefore, it would be
preferable to correct for genetic effects out-
side the evaluation window by some other
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means than a cofactor set constructed from a
regression subset procedure.

The alternative we propose is to inspect
the genome chromosome by chromosome
(chromosomes are independent units by def-
inition). When testing for QTL at a specific
chromosome, the original phenotypic data
are replaced by the residuals of a multi-
variate multiple regression of the pheno-
typic data (responses across environments)
on all markers of the complementary set
of chromosomes (all chromosomes minus
the one under test). In that way, the genetic
effects due to QTL at other chromosomes
will have been removed before testing at
the present chromosome commences. As the
number of markers will be high in relation
to the number of offspring groups or the
number of predictors will be large in relation
to the number of observations, severe
collinearity problems can be expected.
To solve these collinearity problems, the
regression coefficients should be smoothed
or penalized in some way. At present, we
use a partial least-squares procedure to
deal with the collinearity problem (Helland,
1988), although alternative smoothers and
shrinkage-estimation procedures are under
study. To find an acceptable amount of
smoothing of the regression coefficients, a
cross-validation procedure is used (Osten,
1988), which is implemented in the partial
least-squares module of GENSTAT (1993).

Example

To illustrate the methodology proposed
above, we shall take a look at an analysis of

data obtained in the CIMMYT programme
for drought and low-nitrogen stress. Part of
these data was analysed before. For the
results of these analyses and a detailed
description of the data material, both
phenotypic and molecular, see Ribaut et al.
(1996, 1997). In this chapter, we shall dis-
cuss analyses of yield and the length of the
anthesis–silking interval (ASI), observed
on a set of 211 F2-derived F3 families that
were evaluated in eight trials in the years
1992, 1994 and 1996, under various stress
conditions related to water and nitrogen
availability. For each trial, environmental
information was recorded in the form of
radiation, maximum and minimum temper-
ature, precipitation and sun hours during
the main developmental stages of preflower-
ing (vegetative), flowering and postflower-
ing (grain filling). Table 16.1 gives a brief
description of the trials plus the means for
yield and ASI. A short ASI is considered
indicative of drought-stress tolerance. The
ASI is used as a secondary character for
improving yield under stress conditions. In
Table 16.1, one can observe that, across the
eight trials we analysed, there existed a
tendency of lower, more negative, ASIs
with higher average yields, i.e. less stress.

We shall report here only on the QTL
analyses for the additive genetic effects rela-
tive to the first chromosome. The genetic
predictors were calculated following the
algorithm of Jiang and Zeng (1997). The
available set of mapped restriction fragment
length polymorphism (RFLP) markers for
the whole of the genome consisted of 132
RFLP markers, of which 21 were located on
the first chromosome. Factorial regressions
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Trial code Year Sowing Nitrogen Drought stress
Mean yield

in t ha−1
ASI in
days

NS92a
IS92a
SS92a
IS94a
SS94a
LN96a
LN96b
HN96b

1992
1992
1992
1994
1994
1996
1996
1996

Winter
Winter
Winter
Winter
Winter
Winter
Summer
Summer

Normal
Normal
Normal
Normal
Normal
Low
Low
High

No
Intermediate
Severe
Intermediate
Severe
No
No
No

10.5
6.4
3.7
4.2
4.1
1.8
1.0
4.9

−1.6
−1.0
−0.9
−1.8
−1.9
−2.9
−3.3
−1.1

Table 16.1. Description of CIMMYT drought- and low-nitrogen-stress trials.



were calculated every 3.33 cM and at the
markers. At each evaluation position, the
amount of variation due to the QTL main
effect and QEI was calculated. These were
expressed as a percentage of the total amount
of variation due to the genotypic main effect
plus GEI. Thus, the test statistics calculated
were the percentage of variation due to a
QTL main effect, R QTL

2 , the percentage of
variation due to QEI, R QEI

2 , and the percent-
age of variation due to the fit of an individual
QTL for each environment, R QTL QEI

2
+ . Note

that the total variation was calculated after
correction of the data for genetic effects
on the other chromosomes, i.e. we applied
the form of composite interval mapping
described in the preceding section. Figure
16.1 contains, for yield, the profiles for
the three test statistics plus critical values
(α = 0.05) based on 100 randomizations, as
described in the section on estimation and
testing. The comparison of the QTL + QEI
and QEI profiles with the critical values
reveals that there are good reasons to assume
the existence of environment-specific QTL
in the region between roughly 100 and
180 cM. In contrast, inspection of Fig. 16.2,

which contains the R2 profiles for ASI,
shows that, for ASI, there is good evidence
for a QTL in the region between 170 and
230 cM, but no indication for environment-
specific expression of QTL, as nearly all QTL
activity is of a main-effect nature. It is inter-
esting to see that, for chromosome 1, there is
no support for the hypothesis of common
QTL for yield and ASI.

We continue with the further analysis
of yield. As a double check for the signifi-
cance of the environment-dependent QTL
on chromosome 1, we also used the pro-
cedure based on the sequentially rejective
Bonferroni tests. For a test statistic, we used
the variance ratio of the mean square for
regression (on the additive genetic predic-
tors per environment) divided by the mean
square for deviations from regression. In
Fig. 16.3, the part of the chromosome that
was found to have a significant test result
according to this procedure is boxed. The
results of the sequential Bonferroni and
randomization procedure were found to
correspond well in this case. In general, the
randomization tests appeared to be more
stringent than the sequential Bonferroni
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Fig. 16.1. Profiles for R2 test statistics and randomization critical values (horizontal lines; α = 0.05) for
additive QTL main effect, QEI and QTL main effect + QEI for yield at chromosome 1. Numbers 1 to 21
indicate marker positions.



procedure. To estimate the most likely place
for the QTL, the R2 profile was smoothed
and the location of the maximum of the
smoothed curve was determined to be at
140 cM (139.86 cM).

Results of analyses of variance and
factorial regressions at 140 cM are presented
in Tables 16.2 and 16.3. The upper segment
of Table 16.2 provides the results of the
two-way ANOVA of the yield data. Appar-
ently, most of the variation can be attributed
to differences between the trials (environ-
ments). This is to be expected for a set of
trials that differed so much in environmental
conditions. The interesting statistics are the
sums of squares and mean squares due to F2

families and GEI. The GE term (for GEI)
represents a substantial part of the genotype-
related variation (sum of squares for geno-
typic main effect plus GEI). As the more
relevant part of GEI is usually lumped with
large amounts of noise in the GE term of the
two-way ANOVA, the F test for GE is not
very informative. Nevertheless, the GE term
in the upper segment of Table 16.2 is clearly
significant when tested against the intra-
block estimate, 0.75 (with at least 200

degrees of freedom). In the middle segment
of Table 16.2, the results of the correction
for genetic effects at the other chromosomes
(2–10) can be found. About a quarter of the
total genotype-related yield variation can
be ascribed to QTL (genes) on the other
chromosomes. In principle, the degrees of
freedom for genotypes and GE should be
adjusted for the correction. There are various
ways of doing this. However, as the adjust-
ment would have very little influence on
further inferences, we left the degrees of
freedom unaltered.

The last segment of Table 16.2 is the
most interesting one, as now the variation
due to additive QTL at chromosome 1
(140 cM) is addressed. First, the eight
environment-dependent QTL do not seem
to be responsible for a major amount of varia-
tion – 6.3% of the adjusted genotype-related
variation in yield. QEI dominated the QTL
main effect, when comparing the sums of
squares. The differences between the envi-
ronments become clear when the effects are
studied (Table 16.3). The additive QTL allele
at 140 cM reduced yield by between 0.31
and 0.84 t ha−1 in the 1992 and 1994 trials,
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Fig. 16.2. Profiles for R2 test statistics and randomization critical values (horizontal lines; α = 0.05) for
additive QTL main effect, QEI and QTL main effect + QEI for ASI on chromosome 1. Numbers 1 to 21
indicate marker positions.



which were mainly drought-stress-related
trials, whereas it did not affect yield in the
low-nitrogen trials of 1996 and even
increased yield by 0.35 t ha−1 in the high-
nitrogen trial of 1996. The second and third
data columns of Table 16.3 demonstrate the
partitioning of the QTL effects per environ-
ment (first data column) into QTL main
effect and QTL interaction effects. The QTL
interaction effects were negative for the 1992
and 1994 trials and positive for the 1996
trials. When the QTL interaction effects
were regressed on the set of environmental
covariables, minimum temperature at flow-
ering exhibited a close relation with these
interaction effects (Table 16.2 bottom, Table
16.3 last two columns). The effect of the
environment-specific QTL effects (QEI) can
be understood as an increase in yield by
0.065 t ha−1 for each degree (Celsius) that
the minimum temperature at flowering was
higher. For genotypes that are homozygous
at this QTL, the increase will, of course,
double. This model did not do equally well
for each environment, as can be seen in the
last column of Table 16.3. Note that, because

of the QTL main effect, yield will, at any rate,
be decreased by 0.33 t ha−1 for each QTL
allele present.

Final Comments

In this chapter, we have tried to give an
outline of a conceptually simple method for
analysing QEI. The model and inference
we used do not require special-purpose
software or sophisticated programming in
one of the major statistical packages. Thus,
the methods should be within reach for
many practitioners.

As is the case with any method, our
method is also open to improvement. One
obvious criticism can be that no attention is
given to the occurrence of closely linked
QTL. To counteract this comment, it can be
remarked that the method of analysis that
has been described above is rather easily
adapted to allow for a few extra cofactors on
the chromosome under study. The easiest
way to investigate the existence of potential
ghost QTL would be to play around with a
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Fig. 16.3. Profiles for R2 test statistic and randomization critical value (horizontal lines; α = 0.05) for
additive QTL main effect + QEI for yield on chromosome 1, smoothed R2 profile, and trajectory of
significant test results on the basis of a sequentially rejective Bonferroni procedure (boxed). Numbers 1
to 21 indicate marker positions.



pair of markers at increasing distances from
the location of an earlier identified QTL, as
suggested by Hackett et al. (2001).

A second point of criticism could be
that the factorial-regression model we use
does not fully exploit correlations between
environments as the variance–covariance

structure is the identity structure typical of
standard ANOVA and regression models.
Again, the factorial-regression model can be
extended so as to have a more complicated
variance–covariance structure. Once a num-
ber of putative QTL have been identified
with standard factorial-regression models,
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Source of variation Degrees of freedom Sum of squares Mean square

Environment (E)
G + GE
F2 family (G)
GE
Total

1,687
1,680
1,210
1,470
1,687

12,777.169
3,212.868
1,382.102
1,829.700

15,988.970

1,825.310
1,821.914
1,826.581
1,821.245

G + GE
QTL + QE Chrom. 2–10
G + GE adjusted
F2 family (G) adjusted
GE adjusted

1,680
–*

*1,680*

1,210
1,470

3,212.868
12,760.990
2,451.547

12,748.879
1,702.668

1,821.914
–

1,823.566
1,821.158

G + GE adjusted
QTL + QEI 140 cM Chrom. 1
QTL main effect
QEI
Min. temp. flow.
Residual QEI
Deviations

1,680
1,688
1,681
1,687
1,681
1,686
1,672

2,451.547
12,154.069
12,167.892
12,186.177
12,165.810
12,120.368
2,297.478

1,819.259
1,867.982
1,812.311
1,865.810
1,823.395
1,821.374

*For the correction of the yield data due to genetic effects at chromosomes 2–10, degrees of freedom
might be discounted (see text).

Table 16.2. Partitionings of yield variation at position 140 cM on chromosome 1. An estimate for error,
derived from the median intra-block error, was 0.75.

QTL per
environment

QTL + QEI model
Factorial regression on min. temp.

flow. for QEI

QTL
main effect

QTL
interaction

Fit regression on
min. temp. flow.

Residual QTL
interactionTrial code QTL effect

NS92a
IS92a
SS92a
IS94a
SS94a
LN96a
LN96b
HN96b

−0.62
−0.55
−0.84
−0.60
−0.31
−0.00
−0.08
−0.35

−0.33
−0.33
−0.33
−0.33
−0.33
−0.33
−0.33
−0.33

−0.29
−0.22
−0.51
−0.27
−0.02
−0.33
−0.25
−0.68

0.065*–2.88
0.065*–3.76
0.065*–4.76
0.065*–3.08
0.065*–2.98
0.065* 1.26
0.065* 8.12
0.065* 8.09

−0.10
−0.03
−0.19
−0.07
−0.21
−0.25
−0.28
−0.15

Standard error −0.132 −0.042 −0.119 0.0083a −0.116

aStandard error of slope.

Table 16.3. QTL effects for yield, corresponding  to three models. The fit for the factorial regression
model for QEI is expressed as the product* of the regression coefficient and the value for the minimum
temperature during flowering in degrees Celsius, the latter given as the deviation from the mean for that
temperature (across the eight environments).



more elaborate mixed models, like those
described by Piepho (2000), can be fitted
to improve estimation of QTL effects and
investigate the QTL basis for genetic correla-
tions between environments and traits. This
subject is currently under study.
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Introduction

Genotype–environment interaction remains
one of the major sources of vexation and
opportunity in plant improvement. Identifi-
cation of the primary genetic and envir-
onmental determinants of the numerous
interactions will be a step forward for plant-
improvement programmes. Contemporary
biological and information sciences are
beginning to provide the foundation neces-
sary to conduct studies that link genes
with phenotypes and responses to defined
signals from the environment.

The centre of origin and diversity of
maize (Zea mays L.) is in the tropics, but the
crop is planted between 58°N and 40°S lati-
tude (Hallauer and Miranda, 1981). Maize
has a short-day photoperiod response and
has adequate allelic variation to effectively
convert the photoperiod response to day
neutrality. Photoperiod sensitivity limits
the evaluation and exchange of germ-plasm
between temperate and tropical breeding
programmes. Therefore, maize genetic
diversity has not been well exploited. In
temperate maize, less than 4% originates

from tropical or exotic germ-plasm (Darrah
and Zuber, 1985).

In maize, the inheritance of photoperiod
response is not well defined. Photoperiod
sensitivity is a quantitative trait and its
inheritance is mostly additive (Russell and
Stuber, 1985). Two to 19 loci were reported
to control flowering (Giesbrecht, 1960;
Francis, 1972). Koester et al. (1993) reported
two mechanisms that control the inheritance
of flowering: base maturity and photoperiod
sensitivity. Kim et al. (1991) and Koester
et al. (1993) detected few quantitative trait
loci (QTL) related to flowering and they sug-
gested that chromosome 8 might be involved
in the photoperiod response.

In other cereals, three classes of genes
controlling flowering time are known:
vernalization genes, photoperiod genes and
‘earliness per se’ genes, which control flow-
ering independently from the environment.
Other mutations have been reported, but
they have not been related to any of these
three classes. In barley (Hordeum vulgare
L.), loci for ‘earliness per se’ – ea, easp,
eac, eak and ea7 – were detected as loci
controlling flowering and/or photoperiod
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sensitivity (Nilan, 1964; Takahashi and
Yasuda, 1971; Gallagher et al., 1991; Von
Wettstein-Knowles, 1992). The genes easp,
eac and eak are activated by short days
(Gallagher et al., 1991). Also in barley,
Sh, Sh2 and Sh3 are loci responsible for
winter and spring growth habit (Takahashi
and Yasuda, 1971). Two genes associated
with photoperiod response were detected:
Ppd-H1 regulates flowering only in long
days and Ppd-H2 has significant effect
only under short days (Laurie et al., 1994).
Epistatic interactions contributing to the
control of flowering between Ppd and Sh2
were observed (Karsai et al., 1997). In wheat
(Triticum aestivum L.), chromosomes 1A,
4B, 6B, 3B and 7D are involved in control-
ling flowering time (Halloran and Boydell,
1967). Marcellos and Single (1971) classified
wheat genotypes in four classes based on
their response to photoperiod: least, slightly,
moderately and strongly sensitive. Later,
Ppd1, Ppd2 and Ppd3 were identified as
major  loci  for photoperiod sensitivity  on
chromosomes 2D, 2B and 2A (Law et al.,
1978) and seem to be homologous to Ppd-H1
loci in barley (Laurie et al., 1994). In rice
(Oryza sativa L.), different photoperiod-
sensitivity genes – E1-E3, Se2-Se5, Se-1n,
Se-1u, I-Se-1 and En-Se-1 – were identified
(Okumoto and Tanisaka, 1997). In sorghum
(Sorghum bicolor), four genes were identi-
fied that control flowering time (Morgan,
1994). These genes were termed maturity
genes, or Ma1, Ma2, Ma3 and Ma4.

In Arabidopsis, multiple pathways
control flowering time and currently 80
genes and loci are known to be involved.

1. The photoperiod promotion pathway
initiates flowering in response to photo-
period through a number of genes that sense
and respond to day length. It groups mutants
that have their flowering time delayed in
long days but not in short days.
2. The autonomous promotion pathway
includes the genes that promote flowering
independently from environmental signals.
3. The gibberellic acid (GA) promotion
pathway plays a promotive role in flowering
based on signals mediated by GA. The

application of GA accelerates the flowering
time of wild-type plants under short days
and of the late-flowering mutants under long
days. Under non-inductive photoperiods,
the ga1 mutant does not flower unless pro-
vided with GA.
4. The floral transition (FT) subgroup
includes mutants that flower late in long
days but have properties that distinguish
them    from    the photoperiod pathway
(Simpson et al., 1999).

A better understanding of the inheri-
tance of photoperiod sensitivity in maize
and the identification of associated QTL
might be of interest to breeders in order to
have an easy and rapid exchange of germ-
plasm across latitudes. Identification of
molecular markers closely associated with
major QTL controlling photoperiod sensitiv-
ity might enable indirect classification
of germ-plasm for photoperiod response
and provide a basis for the marker-assisted
conversion of germ-plasm.

The objectives of the present study are
to: (i) identify and locate QTL related
to flowering and photoperiod response in
a maize population evaluated in long- and
short-day environments; (ii) determine their
genetic control; (iii) compare these QTL
with previously identified QTL in maize
and related crops; and (iv) relate QTL with
possible candidate genes.

Material and Methods

Plant material

A sensitive tropical inbred line CML9
was crossed to a relatively insensitive
temperate line A632Ht. The F1 generation
was self-pollinated and the F2 generation
was grown at Tlaltizapan, Mexico (18°N,
99°W and 940 m above sea level (masl)),
and self-pollinated to produce the F3

lines used for phenotypic evaluations.
Leaf samples were harvested from F2

plants, frozen, ground and stored at −18°C.
A selection of 236 F3 lines was made for
evaluation.
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Field design

A total of 236 F3 lines and both parents,
A632Ht and CML9, were evaluated in dif-
ferent photoperiods and years. Each parent
was repeated twice in each replication. A
24 × 10 alpha (0, 1) lattice with two replica-
tions was used. The F3 lines and the parents
were planted in single-row plots, 2.5 m long
with 20 cm between rows. Experiments
were planted under two different day
lengths and during 3 successive years.
There were a total of six environments:

1. Tlaltizapan, Mexico (18°N, 99°W and
940 masl), cycle B (June to November) in
17 h of day length in 1995.
2. Tlaltizapan cycle B in normal day
length, 13 h, in 1995.
3. Tlaltizapan, cycle A (November–April)
with a day length of 11.5 h in 1996.
4. Tlaltizapan, cycle A with day length of
17 h in 1996.
5. Ames at the Iowa State University (ISU)
Agronomy and Agricultural Engineering
Research Center, West Ames, with a day
length of 15.5 h in 1997.
6. Tlaltizapan, cycle B under normal day
length of 13 h in 1997.

Artificial light provided by 150-watt bulbs
was used to extend the day length to 17 h in
environments 1 and 4.

Phenotypic data

Herein, the primary trait of interest is the
number of days from sowing to anthesis (i.e.
AD). Anthesis was defined as the date on
which 50% of the plants in a plot exerted
anthers. Separate analyses of AD in long-
and short-day environments were conducted.
Subsequently, the data from the long-day
environments (1, 4 and 5 above) were com-
bined and used in the analysis of variance
and QTL detection. The same was done for
data collected in the short-day environ-
ments (2, 3 and 6). To estimate the adjusted
means used in QTL analyses, entries were
considered fixed, while complete and
incomplete blocks were random (Cardinal

et al., 2001). To calculate variances, entries,
complete and incomplete blocks were all
considered random (Cardinal et al., 2001).
Broad-sense heritabilities on an entry-
mean basis were calculated as previously
established (Fehr, 1987). Exact confidence
intervals (CIs) for heritability estimates
were calculated (Knapp et al., 1985).

Linkage mapping

Restriction fragment length polymorphisms
(RFLPs) and simple sequence repeats (SSRs)
were used to make the linkage map. DNA
was extracted from the parental lines and
the 236 F2 plants. Procedures for RFLP anal-
ysis have been described (Hoisington et al.,
1994). SSRs were used to detect more poly-
morphic loci, especially to cover gaps left
with RFLP markers according to published
procedures (Senior et al., 1996). A total of
129 loci were used to make the genetic map.

MAPMAKER Version 3.0 (Lander et al.,
1987) was used to construct the linkage map
based on the genetic data of 236 individuals.
Markers were assigned to linkage groups
based on a minimum LOD score of 3.0 and a
maximum Haldane distance of 50 cM. For
chromosome 4, the minimum distance was
extended to 54 because of one gap (53 cM)
therein. The ‘three-point’ command was
used for each linkage group. The ‘order’
command for multipoint analysis was
repeated and the best order from it was used
as a starting-point for each linkage group.
The command ‘try’ was used to place the
remaining markers in their appropriate link-
age group. The chi-square test at P = 0.05
detected segregation distortion at 14 (11%)
loci. Ten linkage groups were obtained and
the total length of the map is 1658.3 cM. The
map is mostly in agreement with previous
published maps (Davis et al., 1999).

QTL mapping

The composite interval mapping method
(Zeng, 1994) facilitated by PLABQTL version
1.1 (Utz and Melchinger, 1996) was used for
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QTL mapping. The analysis was conducted
for each of the two groups of environments
(i.e. the long-day environments and the
short-day environments). Cofactors were
selected based on the output of the stepwise
method using the ‘cov select’ command.
The cofactors close to the putative QTL
were then chosen as final cofactors. The
threshold LOD score was estimated based
on the output of 1000 permutations using
PLABQTL. The identified QTL were then
included in a model analysed by forward
and backward regression facilitated by
the ‘seq/s’ statement of PLABQTL. The best
model was chosen based on the Akaiki
information criterion (AIC) values (Jansen,
1993). Epistatic interactions between all
pairs of marker loci were tested using the
Epistacy programme (Holland, 1998). The
significant interaction terms with a P value
less than 0.00026 (Holland et al., 1997)
were included in the final model. Inter-
actions were declared significant and main-
tained in the final model when P ≤ 0.05 for
the interactions, as well as for the markers
close to the QTL.

Results

Field evaluation

In general, AD was higher in long-day than
in short-day environments for both parents,
as well as for the F3 lines. The parent CML9
had a stronger response to photoperiod than
A632Ht. The difference between the two
parents was 7 days in short-day environ-
ments and 34 days in long-day environ-
ments (Table 17.1). The difference of AD for
the same parent in different photoperiods
was 6 days for A632Ht and 33 days for
CML9 (Table 17.1). These results confirmed
that CML9 is more photoperiod-sensitive
than A632Ht. The mean AD of the F3 lines
was higher in long-day environments, 71
days in short-day environments and 92 days
in long days (Table 17.1). The distribution
of AD values in short- and long-day
environments was clearly separated. Trans-
gressive segregants were observed only in

short-day environments (Table 17.1). The
heritabilities on an entry-mean basis
were similar in both photoperiods: 0.85
(0.82–0.88 95% CI) and 0.88 (0.85–0.90
95% CI) in short- and long-day environ-
ments, respectively (Table 17.1).

QTL mapping

Different sets of QTL were detected in
long-and short-day environments. In long
days, five putative QTL were detected on
chromosomes 2, 3, 8, 9 and 10. The total
phenotypic variation associated with these
QTL was 60% (Table 17.2). In short-day
environments, QTL were identified on
chromosomes 1, 2, 3, 4 (umc353), 4
(npi444), 5 and 9. The total phenotypic
variation explained by these QTL was 40%
(Table 17.2). Comparing long- and short-day
environments, the QTL on chromosome
2 had a similar map position in both
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Photoperiod
Long days

(days)
Short days

(days)

Parents
CML9
A632Ht
LSD

112.88
78.88
4.88

79.88
72.88
5.88

F3 lines
Mean
Range
LSD

92.88
82–102.

5.88

71.88
65–77

3.88

Variances
Genotypic

95% CI
Error

95% CI
G × E

95% CI
Heritability

95% CI

18.88
15–22
10.88
9–12
2.88

1–2
0.88

0.85–0.90

5.88
4–6
2.88
1–2
2.88
2–4
0.85

0.82–0.88

LSD, least significant difference at α = 5%;
CI, confidence interval; G × E, genotype ×
environment.

Table 17.1. Means, variances and entry-mean
basis heritabilities of AD in the CML9 × A632Ht
maize population in long- and short-day
environments.



photoperiods. Even though the QTL on
chromosome 9 had close map positions
in both photoperiods (Fig. 17.1), the
contrasting parental effects suggested that
two different QTL are involved and both
are photoperiod-dependent. QTL on chro-
mosomes 3 (npi108a), 8, 9 (umc39d) and
10 were associated with AD only in long
days. QTL on chromosomes 1, 3 (umc10),
4 (umc353), 4 (npi444), 5 and 9 (umc81)
were associated with AD only in short days
(Fig. 17.1 and Table 17.2).

All QTL identified herein in both photo-
periods had highly significant additive
effects and four QTL had significant domi-
nance effects. QTL in long days had higher
additive effects than in short-day environ-
ments. CML9 alleles were associated with
higher AD (i.e. later flowering) at most QTL
in both photoperiods, with additive genetic
effects from 1 to 4 days in long-day environ-
ments and from 0.5 to 1.0 day in short-day
environments (Table 17.2). In long days, the
QTL on chromosomes 8 and 10 had the larg-
est additive effects: 2.5 and 4 days (Table
17.2). In short days, QTL on chromosomes 3
(umc10) and 9 had the largest additive
values but with contrasting effects: 1 and −1,

respectively (Table 17.2). Dominance effects
were negative, indicative of a decrease of AD
(i.e. earlier flowering) for most QTL in both
photoperiods. However, these effects were
statistically significant only for the QTL on
chromosome 2 in short days and on chromo-
somes 2 and 3 in long days. The QTL on
chromosome 10 in long-day environments
had significant dominance effects that
increased AD (positive value; Table 17.2).
Overall, dominance effects for AD were
towards earlier anthesis in both long- and
short-day environments (Table 17.2). A sig-
nificant epistatic effect between umc96 on
chromosome 3 and npi203 on chromosome
4 was detected in long-day environments but
not in short-day environments (Table 17.3).

Discussion

Phenotypic and genotypic data

The tropical parent CML9 is highly sensi-
tive to day length, since it had a stronger
response to photoperiod than the temperate
parent A632Ht. The AD of the population of
F3 lines was significantly higher in long-day
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Environment Chromosome
Adjacent
marker

Additive effect
† (days)

Partial R2

additive
Dominance

effect
Partial R2

dominance

Long days 2
3
8
9

10

Umc38a
Npi108a
Umc138b
Umc39d
Npi264

1.16**

1.57**

2.59**

2.38**

4.27**

7.7
11.2
27.9
17.7
45.5

−1.66**

−1.14**

−0.48**

−0.60**

−0.86**

7.1
2.7
0.6
0.4
1.7

Total adjusted R2: 60

Short days 1
2
3
4
4
5
9

Umc23
Umc38a
Umc10
Umc353
Npi444
Npi409
Umc81

0.62**

0.78**

1.17**

0.95**

0.50**

−0.59**−
−0.97**−

4.9
8.9

15.0
9.5
3.0
4.8

12.6

−0.30**

−0.76**

−0.45**

−0.34**

−0.52**

−0.11**

−0.31**

0.5
4.0
1.3
0.6
1.5
0.1
0.7

Total adjusted R2: 40

*Significant at P < 5%; **significant at P < 1%.
†Positive additive effect means that the CML9 alleles increase the value of the trait.

Table 17.2. Chromosomal location, additive and dominance effects and partial R2 of QTL associated
with AD in long-day and short-day environments in the CML9 × A632Ht maize population.
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Fig. 17.1. Genetic map of CML9 × A632Ht population, location of QTL and epistatic interaction related to days from sowing to anthesis (AD) in long- and short-day
environments and position of candidate genes. The boxes are the support interval for each QTL and the wide black strip in each box is the most probable position of
the QTL. White or grey boxes (left side of the chromosome) represent QTL in short days. Alleles from CML9 increase AD for white-box QTL, while alleles from
A632Ht increase AD for grey-box QTL. Dotted boxes (right side of the chromosome) represent QTL in long days with alleles from CML9 increasing AD. Candidate
genes are in bold on the left side of the chromosome.



environments. The distribution of the lines
was clearly separated in both photoperiods,
and transgressive progenies were observed
towards earlier flowering in the short-day
environments. The presence of transgres-
sive progeny for flowering time has been
observed across different plant species,
such as rice (Dung et al., 1998; Lin et al.,
1998) and barley (Stracke and Borner,
1998). The segregation distortion of some
alleles might indicate a non-random trans-
mission of alleles from parents to offspring.
This was previously observed in other
maize populations (Edwards et al., 1987;
Abler et al., 1991; Koester et al., 1993). This
distortion should not affect the association
between a marker and the phenotype
(Koester et al., 1993), but it can affect
the precision of the QTL position (Lorieux
et al., 1995). Segregation distortion was
observed for alleles of the loci close to
the QTL on chromosomes 1 (umc23), 3
(umc10), 4 (npi444) and 10 (npi264).

QTL mapping

Different sets of QTL were found in long-
and short-day environments. One QTL was
photoperiod-independent and ten QTL
were photoperiod-dependent. The QTL on
chromosome 2 had similar positions in
both photoperiods and seems to control AD
independently from photoperiod perhaps
in a manner similar to that of the ‘auto-
nomous promotion pathway’, as described
in Arabidopisis (Simpson et al., 1999), or

‘earliness per se’, as defined in barley
(Laurie et al., 1995). The QTL on chromo-
somes 3, 8, 9 (umc39d) and 10 were
detected only in long-day environments,
suggesting that these QTL are photoperiod-
sensitive and become effective only when
day length is above the critical value for
maize (i.e. 14.5 h) (Francis, 1972). These
QTL might be classified in the photo-
period promotion pathway, as described
by Simpson et al. (1999) in Arabidopsis.
The QTL on chromosomes 1, 3 (umc102),
4 (npi444), 4 (umc353), 5 and 9 (umc81)
were related to AD only in short-day envi-
ronments. These QTL are also photoperiod-
sensitive but promote flowering when day
length is lower than the critical value for
maize. Therefore, photoperiod-sensitive
genes may be subdivided into two sub-
classes: a group of genes detected in long
days (the QTL on chromosomes 3, 8, 9
(umc39d) and 10) and a second subclass
associated with flowering in short days (the
QTL on chromosomes 1, 3 (umc102), 4 and
9 (umc81)).

Alleles for earliness were only from the
A632Ht parent in long days, but in short
days two earliness alleles (chromosomes
5 and 9) were from CML9. Consequently,
the combination of earliness alleles from
both parents might explain the trangressive
segregation for earliness. AD mostly showed
earliness dominant to lateness in both
photoperiods. Previous studies reported that
earliness was dominant to lateness in other
maize populations in long and short days
(Yang Yun-Kuei, 1949; Giesbrecht, 1960;
Bubeck et al., 1993; Cardinal et al., 2001).
The same result was observed in other crops,
such as wheat, where early heading was
found to be partially dominant to late head-
ing (Klaimi and Qualset, 1973). In contrast,
dominance towards lateness was prevalent
in sorghum (Lin et al., 1995).

One significant digenic interaction was
detected in long days, but none was detected
in short days. Similar epistatic effects
between QTL or flowering genes were
previously detected in maize (Rebai et al.,
1997), wheat (Klaimi and Qualset, 1973; Pan
et al., 1994), barley (Gallagher et al., 1991),
soybean (Cober et al., 1996) and Arabidopsis
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Source Chromosomes F Probability

npi264
umc138b
umc81
npi108a
npi271
npi203
umc96
umc96* npi203

10
8
9
3
2
4
3

3*4

17.44
16.70
5.21
7.02
7.73
0.10
0.61
4.51

< 0.0001
< 0.0001
< 0.0074
< 0.0015
< 0.0008
< 0.9055
< 0.5475
< 0.0024

Table 17.3. Significant epistatic effects in long-
day environments in the CML9 × A632Ht maize
population.



(Kuittinen et al., 1997). In the analyses for
epistatic effects, the closest loci and not the
exact position of the QTL have been used.
Interactive effects might be underestimated
with simple analysis of variance because
of possible recombination between the QTL
and the linked marker used in the analyses.

Comparison with other maize populations
and related species

Comparison of QTL position with other
maize studies was based on common loci
or using the Pioneer Composite 1999 map
as a reference when no common loci are
available. The QTL detected herein on
chromosome 1 was linked to the QTL
identified previously in long-day condi-
tions (Veldboom et al., 1994; Cardinal et al.,
2001). Also, a QTL closely linked to that
region of chromosome 1 has been reported
in a previous study conducted in long- and
short-day environments (Koester et al.,
1993). The QTL on chromosome 2 was
linked to the previously identified QTL for
AD in long days (Cardinal et al., 2001) and
the QTL for time to silking in short days
(Bubeck et al., 1993). On chromosome 3,
two independent studies conducted in long
days (Zehr et al., 1992; Cardinal et al., 2001)
found two different QTL each in regions
linked to those detected herein (umc10
in long days and npi108 in short days). A
QTL linked to umc10 was also previously
identified in short days (CIMMYT, 1994).
On chromosome 8, a QTL was previously
detected only in long days in the same
region as detected herein (Stuber et al.,
1992; Zehr et al., 1992; Koester et al., 1993;
Veldboom et al., 1994). A chromosome
segment from early-flowering germ-plasm,
introgressed in a back-crossing programme
for earliness, was also observed in the same
region (Kim et al., 1991; Koester et al.,
1993). On chromosome 9 (umc39d), the
QTL found herein only in long days was
linked to a QTL previously detected in a
similar day length (Veldboom et al., 1994).
However, in the same chromosomal region,
Koester et al. (1993) found a QTL in both

short and long days. This might suggest that
at least two different QTL are located in that
region. The second QTL found herein on
chromosome 9 (umc81) only in short days
had a similar map position to a QTL previ-
ously identified in long days (Abler et al.,
1991; Nourse, 2000; Cardinal et al., 2001).
An independent study (Nourse, 2000) con-
ducted in both photoperiods found a QTL
in that region only in long days, suggesting
that more than one QTL occurs in that
region – one effective in long days and the
other in short days. On chromosome 10, a
QTL was found herein only in long days.
Previous studies detected a QTL in the same
region only in long days (Abler et al., 1991;
Nourse, 2000). Koester et al. (1993) found a
QTL in that region in long- and short-day
environments. An introgressed region from
early material was identified in that loca-
tion in a back-crossing programme for earli-
ness (Koester et al., 1993). That location
might harbour at least two different QTL –
one expressed in long days and the other in
short days.

Candidate genes and QTL in different
species were identified in similar map
positions (same species) or corresponding
regions (different species) as QTL detected
herein. On chromosome 1, a rice QTL
controlling flowering was detected in the
region corresponding to the maize region
where the QTL is detected herein (Li et al.,
1995). Genes such as Id1 (indeterminate
growth 1) and phy1 (phytochrome 1), which
are known for their effect on flowering time,
were associated with this region as well. A
QTL controlling flowering in sorghum was
detected in long days in linkage group B (Lin
et al., 1995), which corresponds to maize
chromosome 2 at the region where the QTL
is detected herein. On chromosome 3 in the
region of umc10, a candidate gene zag2 (Zea
agamous homolog 2), with 49% identity
with an agamous gene (AG) of Arabidopsis,
might be involved in controlling flowering
time, as in Arabidopsis. AG restricts flower-
ing to short-day environments when
mutated (ag) in Arabidopsis and the over-
expression of AG alleles results in early
flowering (Simpson et al., 1999). On chro-
mosome 5, candidate genes phyA2 and phy
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were linked to the region where QTL were
found herein. On chromosome 9, the QTL is
linked to a locus defined by phyB2, a gene
involved in the perception of light signals.
On chromosome 10, a homologous gene to
zag2, zmm1 in maize, is within the same
region as the QTL herein. The Ma1 gene and
a QTL associated with flowering in sorghum
(Lin et al., 1995) also mapped to the corre-
sponding region of maize chromosome 10
(linkage group D of sorghum). In rice,
flowering genes Se1 and Se3 mapped to
chromosome 6, a region paralogous to maize
chromosome 10 (Paterson et al., 1995). The
homologous regions in wheat and barley
harboured photoperiod genes ppd1, ppd2
and ppd3 in wheat (Hart et al., 1993) and
pPD-H1 in barley (Laurie et al., 1994). The
paralogous region to maize chromosome 10
in rice (Paterson et al., 1995) also contained
a QTL related to flowering time (Li et al.,
1995). Moreover, the proportion of the
phenotypic variation explained by the
QTL found herein on chromosome 10 was
the largest (R2 = 24–46%) and that degree
of association was observed for the corre-
sponding regions in sorghum (Lin et al.,
1995) and barley (Laurie et al., 1994).
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Introduction

Fertilization of intensively managed crop
systems is essential in maintaining or
increasing world food production, which is
heavily dependent on nitrogen (N) input to
maximize yield potential. Because N can be
limiting for plant growth, approximately 85
million metric tons of nitrogenous fertiliz-
ers are now added to soils worldwide annu-
ally, up from only 1.3 million t in 1930
(Frink et al., 1999). N fertilizers supplement
the natural soil nutrient supply to satisfy
the demand of crops, to compensate for N
lost by removal of plant products, N leach-
ing and gaseous N loss and to improve
or maintain productive soil conditions
for agriculture (Tabachow et al., 2001).
Humans now use some 160 million t of N
year−1, of which 98 million t are industrially
fixed by the Haber–Bosch process (83 mil-
lion t for use as agricultural fertilizer, 15
million t for industry), 22 million tons
are made during combustion and the rest is
fixed during the cultivation of leguminous
crops and fodders (Jenkinson, 2001). This
has markedly increased the burden of com-
bined N entering rivers, lakes and shallow
seas, as well as increasing the input of
ammonia (NH3), nitrous oxide (N2O), nitric
oxide (NO) and nitrogen dioxide (NO2) to
the atmosphere. Excess N flowing down
the Mississippi River each year is estimated

to be worth US$750,000,000 (Malakoff,
1998).

Worldwide, the nitrogen-use efficiency
(NUE) of cereal production is approximately
33%, calculated as (total cereal N removed)
− (N coming from the soil + N deposited in
the rainfall)/fertilizer N applied to cereals
(Raun and Johnson, 1999). An increase
in NUE of 20% would result in savings in
excess of US$750 million year−1 worldwide.
Also efficient use of N fertilizers decreases
negative impacts on the environment and
reduces the drain of natural resources.

In the last two decades, world popula-
tion has increased by 1.6 thousand million,
most of this increase being in Asia. It is not
surprising that most of the increase in N
fertilizer use, from 61 million t in 1980/81 to
80 million t in 1997/98, has also been in Asia
(Jenkinson, 2001). The present world popu-
lation growth rate of 1.8% is estimated to
create a shortfall of 20 million t of cereal
grains by the year 2020. This implies that
additional N fertilizer would need to be pro-
duced and used for cereal production in both
irrigated and rain-fed agroecosystems. Man-
ufacturing the fertilizer for today’s needs
already requires 544 × 109 MJ of fossil-fuel
energy annually (Mudhar and Hignett,
1987a,b), which is a tremendous depletion
of a non-renewable source. To obtain the
projected grain yield of 8.0 t ha−1 in irrigated
rice by the year 2025, it will be necessary to
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apply 280 kg N ha−1 at 33% fertilizer N
recovery efficiency (Cassman and Pingali,
1995). This means that N fertilizer use in
irrigated rice in Asia would increase from
15.5 to 43.6 million t, nearly a 300% increase
in N use for a 63% increase in yield.

Although improved technologies of fer-
tilizer application have been developed (see
Cassman et al., 1998), farmer acceptance and
adoption have not been very encouraging
because of the associated higher labour
requirements. On the other hand, the adop-
tion of new N-efficient cultivars by farmers
is likely to be rapid, because no additional
cost is involved and existing cropping sys-
tems and soil/water management practices
are generally not affected. It is, therefore,
important to select for cereal cultivars and
hybrids that absorb and metabolize N in
more efficient ways. This has not received
due attention in the past and must be accor-
ded high priority for crop improvement.

Unfortunately, resource-poor farmers in
marginal areas have not realized the benefits
of increased yield potential as in high-input
cropping systems. Nitrogen deficiency can
also be a problem where N is applied at
suboptimal levels because of the potential
for low economic return resulting from
drought or excessive leaching of nitrate
(NO 3

− ). In the rice–wheat double-cropping
sequence of South Asia, a negative balance
of the primary nutrients still exists, even
with the recommended rate of fertilization
of this system (Singh and Singh, 2001). A
rice–wheat sequence that yields 7 t ha−1 of
rice and 4 t ha−1 of wheat removes more than
300 kg N from the soil. The system, in fact,
is now showing signs of fatigue and is no
longer exhibiting increased production with
increases in input use.

The average global grain yield per unit
area of the major staple crops, wheat, rice
and maize, more than doubled during the
period between 1940 and 1980, powered by
changes in the genetic potential of the crop,
plant-available N and improved agronomic
management strategies (Evans, 1993). How-
ever, recent analyses suggest a progressive
decline in the annual rate of increase in
cereal yield, so that, at present, the annual

rate of yield increase is below the rate of
population increase. To consolidate further
gains in yield enhancement, there is a dire
need to understand in a more integrated
manner the physiological and genetic
causes of these improvements, especially in
relation to NUE.

The Terminology

Nutrient use efficiency comprises nutrient
uptake efficiency and nutrient utilization
efficiency (Janssen, 1998). As a conse-
quence, changes in nutrient use efficiency
may be brought about by changes in uptake
efficiency, in utilization efficiency or in
both. Nutrient uptake efficiency is the ratio
of actual nutrient uptake to potential nutri-
ent supply. Nutrient utilization efficiency is
the ratio of yield to actual nutrient uptake,
where yield refers to dry matter in the
harvestable plant parts (e.g. grains). Both
depend on the availability of the nutrient in
relation to other growth factors (e.g. crop
production potential, availability of other
nutrients, water, irradiation, etc.) in com-
parison to the availability of the nutrient
considered. Nutrient use efficiency is the
product of the two: the ratio of yield to
potential supply. For practical purposes,
potential supply is the maximum quantity
of a nutrient that is taken up when all other
nutrients and growth factors are at optimum
(Janssen et al., 1990). Balanced nutrition
is the best guarantee for the simultaneous
optimum use of all nutrients. Clark (1990)
detailed the physiology of nutrient uptake
and utilization efficiency in cereals.

Ladha et al. (1998) used the following
definitions for evaluation of N-efficient
cultivars:

• Efficiency of acquisition or recovery of
N = plant N content/available N.

• Physiological efficiency with which
N is used to produce biomass = plant
biomass/plant N content.

• Physiological efficiency with which N
is used to produce grain = grain yield/
plant N content.

270 A.S. Basra and S.S. Goyal



Because it is difficult to measure the
amount of N available from soil and fertil-
izer, the relative efficiency for N acquisition
can be evaluated for cultivars (of similar
duration) growing under the same experi-
mental conditions. Total plant N content or
uptake alone can be used as a measure of the
efficiency for acquisition or recovery. While
evaluating NUE of different genotypes, the
ratios and absolute contents should be
compared at multiple N levels, allowing
estimation of both intercept and slope of the
response function (Ladha et al., 1998). This
comparison allows estimates of genotype–N
interactions.

N and Growth of Cereals

During the past 45 years, N fertilization
has been a powerful tool in increasing grain
yield, particularly in cereals. It is recog-
nized that the optimal combination of
new genotypes and higher N rates was the
driving force of the Green Revolution. On
the other hand, there is increasing concern
about the negative effects on the environ-
ment and human health because of exces-
sive use of N fertilizer. Thus, the supply of
sufficient N fertilizer to achieve optimum
grain yield and quality while reducing the
risk of pollution caused by inappropriate
N applications is a crucial task in cereal
production.

Addition of N leads to increased dry-
matter accumulation in vegetative plant
parts and to increased final yields in cereal
crops (Hageman and Lambert, 1988). It is
involved in all of the plant’s metabolic pro-
cesses, its rate of uptake and partitioning
being largely determined by supply and
demand during the various stages of plant
development. In cereals, N has a dominant
role in dry-matter production and accumula-
tion from germination up to the heading
stages (Austin et al., 1977; Heitholt et al.,
1990; Delogu et al., 1998). The availability
of genotypic variability in crop growth and
N uptake rate may be used to assist the
improvement of dry-matter yield via selec-
tion (Greef et al., 1999).

The dependence of plant growth rate
on N concentration in vegetative organs
appears to be a general finding. It has been
shown both within a given species as a
response to external N supply (Agren and
Ingestad, 1987; Hirose, 1988; Garnier, 1998)
and for different species grown under
non-limiting external N supply (Poorter
et al., 1990; Van der Werf et al., 1993;
Garnier and Vancaeyzeele, 1994). Similarly,
there is usually a positive relationship
between light-saturated rates of photosyn-
thesis and the N concentration of leaves
(Field and Mooney, 1986; Peng et al., 1995).
The drop in photosynthesis with the short-
age of N is well documented at both leaf
and canopy levels (Evans, 1989; Sinclair and
Horie, 1989; Sinclair and Muchow, 1999).
N deficiency also reduces light inter-
ception and radiation-use efficiency (RUE)
(Gallagher and Biscoe, 1978; Whitfield
and Smith, 1989; Abbate et al., 1995). N
deficiency decreases assimilate production
at flowering and kernel set by reducing
radiation interception and RUE (Gifford
et al., 1984; Uhart and Andrade, 1995).

Theoretical studies have suggested that
RUE would increase if N is preferentially
allocated to the more illuminated leaves in
the upper layers of the canopy (Field, 1983;
Hirose and Werger, 1987). Whether N distri-
bution can be modified to maximize RUE of
cereals has not been methodically addressed
(see Dreccer et al., 1998). In addition, N
deficiency reduces water-use efficiency
(WUE) in wheat (Brown, 1971; Heitholt,
1989; Nielsen and Halvorson, 1991), while
fertilizer application dramatically increases
WUE (Caviglia and Sadras, 2001). In fact, it is
widely accepted that fertilizer management
is an important tool for the improvement of
WUE (Cooper et al., 1987). Another way to
achieve this is through selection of cultivars
with enhanced early vigour (Richards et al.,
1993).

Pre-anthesis N uptake in winter cereals
represents 75–90% of total N in the plant
at harvest (Austin et al., 1976; Spiertz and
Ellen, 1978; Heitholt et al., 1990). Under
conditions of high soil fertility, even post-
anthesis N uptake is important because it
is positively correlated to kernel protein
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content and to the N harvest index (Perez
et al., 1983).

Although most of the N in the wheat
grain originates from N taken up prior to
anthesis, the N uptake capacity is retained at
anthesis (Van Sanford and MacKown, 1987;
Oscarson et al., 1995). The rate of grain N
accumulation is linear for most of the grain-
filling period (Sofield et al., 1977), which
can be met by either the active uptake of N
during the grain-filling period and/or the
remobilization of N from vegetative tissues.
N remobilization is probably the most
important source of grain N under most
production systems (Simmons, 1987).

This idea is in agreement with previous
studies performed on maize hybrids
correlating the efficiency of primary N
assimilation and N remobilization with
yield and its components (Reed et al., 1980;
Purcino et al., 1998). Similarly, Teyker et al.
(1989) and Plenet and Lemaire (1999) also
concluded that, in addition to what is
required for its vegetative growth, the plant
must absorb and store an excess of N, which
is then further metabolized and translocated
to the kernels. Studies by Hirel et al. (2001)
strengthened the concept that increased
productivity in maize genotypes was due
to their ability to accumulate NO 3

− in their
leaves during vegetative growth and to
efficiently remobilize this stored N during
grain filling. This NO 3

− pool is usually stored
in the vacuole and serves as an osmoticum
and as a source of mineral N when the
soil supply becomes depleted (Crawford and
Glass, 1998). In rice, Ying et al. (1998) have
noted a key role of leaf N as a reservoir of
remobilizable N that is needed to sustain
high grain yield in tropical and subtropical
environments. Hence, leaf NO 3

− content at
the early stages of plant development may be
a good marker for selecting genotypes with
enhanced grain yield and grain N content
(Hirel et al., 2001).

The N uptake in the grains can be
taken as an indicator of N sufficiency
(Goos et al., 1982), because most of the N
accumulated is translocated to the grains
(Sherchand and Paulsen, 1985). Grain filling
appears to be largely under the control of
N availability (Frederick and Bauer, 1999).

The rate of N demand by the developing
grain may, in fact, control the rate of leaf
senescence. Frederick (1997) found that
the photosynthetic activity of flag leaves
decreases rapidly when the developing grain
reaches about half of its size. During grain
filling, only a limited amount of N is taken
from  the  soil  and  N remobilization from
senescent vegetative tissues is the dominant
process. Late applications of N (at booting
stage or later) usually increase leaf N concen-
tration and may delay senescence (Banziger
et al., 1994; Tindall et al., 1995).

Genetic Improvement for NUE

Although conventional breeding procedures
have been successful in enhancing cereal
yield, there have been few real attempts to
understand in a more integrated manner the
physiological and genetic causes of these
improvements, especially in relation to
NUE (Hirel et al., 2001). A plant’s high yield
ability as related to N fertilization is usually
assessed as agronomic NUE, an indicator
of the amount of yield per unit of applied
N (Novoa and Loomis, 1981; Craswell and
Godwin, 1984). Hence, for a given level
of fertilization, differences in grain yield
would match differences in NUE. Thus,
in selecting improved cultivars, breeders
empirically select those that are more
efficient in N absorption and utilization. N
utilization efficiency reflects the ability of
the plant to translate the N taken up into
economic yield (grains). This parameter has
been extensively used to compare different
species or cultivars at different levels of
N fertility (Ortiz-Monasterio et al., 1997).
Delogu et al. (1998) found that barley out-
performed wheat in this respect, suggesting
a higher ability of barley to generate yield,
particularly at low N input. Ideal cultivars
would be those that perform well under low
soil fertility conditions but also respond
well to applied fertilizer (Ladha et al.,
1998).

Various studies on landraces and wild,
old, intermediate and new genotypes of
cereals showed that the new varieties not
only produced higher grain yields than the
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old varieties but also were more efficient
at using nutrients (Vose, 1990; El Bassam,
1998). Some cultivars were identified as
being multiple-nutrient use-efficient. These
are considered to be low-input cultivars.
Once genotypic variation in nutrient uptake
and utilization is found, physiological or
morphological factors that are responsible
for such variation can be further examined
(Inthapanya et al., 2000).

Several studies have analysed the rela-
tionships between wheat breeding and the N
economy (mainly absorption and partition-
ing), most of which concluded that wheat
breeding did not consistently modify the
amount of N absorbed by the crop (Fischer
and Wall, 1976; Paccaud et al., 1985; Slafer
et al., 1990; Feil, 1992; Calderini et al., 1995,
1999). Therefore, as modern cutivars out-
yield their old counterparts, plant breeding
increased the NUE. None the less, it is
important to recognize that genetic variation
in total N uptake exists in wheat (Austin
et al., 1977; Cox et al., 1985; Heitholt et al.,
1990), and future breeding programmes
could exploit this variability to increase
the biomass production in new cultivars
(Calderini et al., 1999). Studies recently
carried out using wheat lines released by
the International Maize and Wheat Improve-
ment Center (CIMMYT) between 1950
and 1985 (Ortiz-Monasterio et al., 1997)
have demonstrated that total N uptake has
increased, suggesting genetic improvement
in N uptake efficiency. Goyal and Huffaker
(1986) reported a novel method for studying
N transport kinetics using wheat seedlings,
which may be exploited for the rapid screen-
ing of genotypes for superior N uptake.

Cereal-breeding programmes have gen-
erally focused on maximizing yield poten-
tial under the conditions where N supply is
adequate. High-yielding hybrids and lines
typically respond favourably to increased N
inputs. Selection for yield in environments
with low N should be more effective than
selection under high N; however, such
environments are not normally favoured by
breeders because of increased environmen-
tal variability and the reduced heritability
of grain yield under low-N conditions (see
Blum, 1988). The efficiency of selection

for yield in low-N environments may be
improved by selection for correlated second-
ary traits, such as improved N uptake by
seedlings (Teyker et al., 1989), high plant
NO 3

− content (Molaretti et al., 1987) and
mobilization of accumulated N from vege-
tative organs during grain production
(Eghball and Maranville, 1991; Tollenaar,
1991; Plenet and Lemaire, 1999; Rajcan and
Tollenaar, 1999).

There are essential agronomic, eco-
nomic and ecological reasons that make the
search for cultivars that are more efficient
and better adapted to less favourable nutri-
tion an important breeding task. However,
opportunities for progress may be limited
because there is no clear understanding of
the manner in which the major components
of nutrient efficiency are inherited, and most
reports have been concerned with early
growth stages, with very little information
at the reproductive growth stages (Gorny
and Sodkiewicz, 2001). In seedlings, both
additive and non-additive gene effects were
significant for the accumulation and uptake
efficiency of N (Gorz et al., 1987; Ahsan
et al., 1996). The contribution of non-
additive gene effects for generative effi-
ciency indices appears to be less evident
than that found at the vegetative growth
stage (Gorny, 1999). However, the observed
nutrient shortage-induced decrease of herit-
abilities and the enhanced expression of
non-additive gene effects, as well as the
interactions of genotypic effects with fertil-
ization rates and growth stages, suggest that
obtaining nutrient-efficient cultivars under
low-input conditions would be a difficult
task (Gorny and Sodkiewicz, 2001). Experi-
ence of breeders targeting specific environ-
ments (Sivapalan et al., 2000), however,
confirms that selection progress depends
on a rather more specific strategy and
technology. Further attention needs to be
directed towards genetic studies in possibly
diverse nutritional regimes on populations
originating from a diverse germ-plasm.

In analysing a genotype–environment
(G × E) interaction, an index for each
environment (the mean performance of all
genotypes in an environment) may be used
as a suitable index of its environmental
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productivity (Westcott, 1986). The per-
formance of each genotype can be plotted
against this index. When a nutrient is defi-
cient in the natural soil, natural selection
probably leads to the development of plants
that store a higher concentration of that
nutrient in the seed, for the benefit of
succeeding generations (Bonfil and Kafkafi,
2000).

The existence of an interaction of
genotype × level of N fertilization has been
shown in maize (Moll et al., 1987; Bertin and
Gallais, 2000). At high N input, variation in
NUE has been attributed to variation in N
uptake capability, whereas, at low N input,
variation in NUE is mainly due to differ-
ences in N utilization efficiency (Di Fonzo
et al., 1982; Bertin and Gallais, 2000). These
differences in the expression of genetic vari-
ability have also been confirmed following
the detection of specific quantitative trait
loci (QTL) for a given level of fertilization
(Agrama et al., 1999). This suggests that sev-
eral sets of genes are differentially expressed
according to the amount of N provided for
the plant. We need to understand better the
G × E interactions in the expression of these
QTL, through a collaboration between crop
physiologists and molecular biologists, for
improving the usefulness of molecular biol-
ogy in contributing to breeding for complex
quantitative traits such as NUE and yield
potential.

Nitrogen Supply

Most plant species are able to absorb
and assimilate NO 3

− , ammonium (NH4
+),

urea and amino acids as nitrogen sources,
but the response to a particular form of N
is species-specific. In most soils, NO 3

− and
NH4

+ are the predominant sources of N that
are available for plant nutrition. In a typical
aerobic agricultural soil, NO 3

− is the pre-
dominant form (Marschner, 1995), though
high concentrations are generally not main-
tained in soils due to substantial losses from
plants, runoff and microbial denitrification
(Raun and Johnson, 1999). Optimal plant
growth, however, is usually achieved when

N is supplied in both forms (Bloom et al.,
1992, 1993).

The overuse or improper use of nitro-
genous fertilizers to maximize biomass accu-
mulation in cereal production is hazardous
to the environment. Excess NO 3

− pollutes
not only the soil and groundwater but
also the produce itself. N2O released from
denitrification of NO 3

− pollutes the air and
can damage the ozone layer in the strato-
sphere. Improved fertilizer N management
in cereal production should aim at maxi-
mum N absorption during those stages when
N is most efficiently translated into grain
yield, and in a manner such that applied N
is not prone to losses from the soil–plant
system (see Singh and Singh, 2001).

Some early studies reported hereditary
differences in seedling responses to NO 3

−

and NH4
+ forms of N when grown in nutrient

solutions (Harvey, 1939). Although the
NO 3

− forms of fertilizer provided the highest
average response in maize, certain inbreds
responded well to the NH4

+ form of N (Moll
et al., 1982). Genetic studies evaluating
N response in breeding lines and maize
hybrids suggested polygenic inheritance
(Pollmer et al., 1979; Eghball and
Maranville, 1991).

Wheat N uptake was increased by 35%
when one-quarter of the N was supplied as
NH4

+, compared with all N as NO 3
− (Wang

and Below, 1992). High-yielding maize
genotypes were unable to absorb NO 3

− during
ear development (Pan et al., 1984), and there
may be a potential advantage of NH4

+

nutrition for grain production (Tsai et al.,
1992). In regard to energy costs, assimilation
of NO 3

− requires the energy equivalent
of 20 mol ATP mol−1 NO 3

− , whereas NH4
+

assimilation requires only 5 mol ATP
(Salsac et al., 1987), mainly because NO 3

− has
to be reduced prior to assimilation. While
one might expect NH4

+ to be preferred
by plants, as its assimilation requires less
energy than that of NO 3

− , only a few species
perform well when NH4

+ is the only or
the predominant form of N. The exclusive
supply of N as NH4

+ is harmful to many plant
species and can cause poor root and shoot
growth and reduced mineral cation contents
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relative to those of plants receiving NO 3
−

or ammonium nitrate (NH4NO3) nutrition
(Goyal and Huffaker, 1984; Marschner,
1995; Gerendas et al., 1997).

Several hypotheses have been put
forth to explain why NH4

+ is toxic to plants
(Von Wiren et al., 2000). In part, growth
depression is directly related to NH4

+ uptake,
as the assimilation of NH4

+ is accompanied
by about equimolar H+ production. These
protons are excreted most probably due to
increased H+-ATPase activity, leading to an
acidification of the rhizosphere and thus
to repressed cation uptake. Another reason
may be the absence of NO 3

− , which is not
only an important osmoticum, but also
an essential counter-ion for cation trans-
location in the xylem and a signal for the
expression of genes involved in N uptake, N
assimilation, organic acid metabolism and
starch synthesis (Stitt, 1999). In addition,
exclusive nutrition can cause a hormonal
imbalance, leading to a stunted growth
phenotype (Peuke et al., 1998; Walch-Liu
et al., 2000).

Species-specific variation in NH4
+ toxic-

ity has been observed in cereals, e.g. barley is
known to be susceptible to toxicity, while
rice is known for its exceptional tolerance
even to high levels of NH4

+. Britto et al.
(2001) have proposed that the operation of
an energy-intensive NH4

+ extrusion mecha-
nism by barley root cells at high levels of
external NH4

+ appears to be central to the
toxicity syndrome. Such a process must
carry a substantial energetic burden (40%
increase in root respiration) that is inde-
pendent of N metabolism, and is accompa-
nied by decline in growth. In rice, in con-
trast, a cellular defence strategy has evolved
that is characterized by an energetically
neutral equilibration of NH4

+ at high external
NH4

+ concentration.

Ammonium and Nitrate Uptake

N uptake by plant roots has long been
studied, using various methods of chemical
analysis, tracer techniques, ion-selective
microelectrodes, etc. (Goyal and Huffaker,

1986; Siddiqi et al., 1990; Glass et al., 1992;
Henriksen et al., 1992; Colmer and Bloom,
1998; Plassard et al., 1999; Newman, 2001).
More recently, attention has been focused
on the transporters themselves, located in
the plasma membrane of cells (for reviews,
see Forde, 2000; Von Wiren et al., 2000).
The problems of N uptake are complex and
there are a number of transport systems.
The kinetic properties of transport systems
measured in whole plants are highly
variable and mainly dependent on the
nutritional status of the plant, which is in
turn affected by environmental factors, such
as light, temperature and previous external
substrate availability.

When NH4
+ and NO 3

− ions are present
together, it appears that the NH4

+ net influx
is greater than the net influx of NO 3

− from
equimolar solutions, and the presence of
NH4

+ tends to inhibit the uptake of NO 3
−

(Henrikson et al., 1990; Taylor and Bloom,
1998). Colmer and Bloom (1998) found a
difference between the mature region and
the growing (meristematic and elongation)
region of maize and rice roots for NH4

+ and
NO 3

− fluxes, the uptake being more in the
latter. Despite much variability between
roots, H+ fluxes were outward in NH4

+, but in
NO 3

− they were inward at the growing region
and were mixed in the mature region
(Plassard et al., 1999). When N availability is
limited, root N demand has a clear priority
over shoot N demand, leading to a rapid
decrease in N translocation to the shoot
(Kronzucker et al., 1998).

The concentration-dependent influx of
NH4

+ into intact plant roots exhibits biphasic
kinetics with two distinct components. At
< 1 mM external NH4

+, the influx approaches
Michaelis–Menten kinetics, whereas, at
higher concentrations, uptake rates seem to
increase linearly (Wang et al., 1993). High-
affinity transport systems and low-affinity
transport systems (LATS) are distinguished
by their apparent Km values (i.e. the
Michaelis–Menten constant – the substrate
concentration that allows the reaction or
transport process to proceed at one-half of its
maximum rate). The high affinity of a trans-
porter is responsible for nutrient acquisition

Mechanisms of Improved N-use Efficiency in Cereals 275



at low external concentrations, whereas low
affinity often correlates with high capacity
for the maintenance of large influxes at high
external availability. Thus, a distinction
between high-affinity/low-capacity and
low-affinity/high-capacity NH4

+ transport
systems reflects their physiological role
more precisely than does a distinction
based on affinity alone. High-affinity NH4

+

transporters are induced in N-starved roots,
whereas other transporters may be regarded
as the ‘workhorses’ that are active when con-
ditions are conducive to NH4

+ assimilation
(Von Wiren et al., 2000).

The net uptake by plant roots is the
difference between the concomitant influx
and efflux of the ion. High intracellular con-
centrations of NH4

+ build up due to uptake by
roots or amino acid breakdown, which leads
to a constant leakage of NH4

+ from roots at a
rate of 11–29% that of the NH4

+ influx (Wang
et al., 1993; Feng et al., 1998). In rice roots,
NH4

+ efflux is decreased by up to 50% in the
presence of NO 3

− , whereas NO 3
− fluxes and

metabolism are strongly repressed by NH4
+

(Kronzucker et al., 1999). NH3 losses from
the leaves of field-grown plants can account
for up to 5% of the shoot N content (Asman
et al., 1998), which is mainly released during
photorespiration and to a minor extent
from amino acid transport and catabolism.
Whether NH4

+ leakage or efflux is mediated
by membrane transporters or largely by
diffusion of NH3 is still unclear (Von
Wiren et al., 2000).

In soil solution, NO 3
− is carried toward

the root by bulk flow and is absorbed into
the epidermal and cortical cells of the root.
NO 3

− is actively transported through the
combined activities of a set of both low- and
high-affinity NO 3

− transport systems, with
the influx of NO 3

− being driven by the H+

gradient across the plasma membrane
(Crawford and Glass, 1998; Forde, 2000;
Tischner, 2000; Fraisier et al., 2001). Once
inside, the NO 3

− may be reduced to NH4
+

and then incorporated into amino acids,
undergo transmembrane efflux, be taken up
and stored in the vacuoles or translocated
to the shoot via xylem for reduction and
vacuolar storage (also for osmoregulation) in
the leaves. In most plant species, only a

small proportion of the absorbed NO 3
− is

assimilated in the root, and the remainder is
transported to the shoot.

The accumulated evidence from kinetic
studies indicates that roots have at least
three distinct NO 3

− uptake systems, two of
which have a high affinity for NO 3

− , while the
third has a low affinity (for a review, see
Forde, 2000). One of the high-affinity sys-
tems is strongly induced in the presence of
an external NO 3

− supply and is known as
the inducible high-affinity transport system
(iHATS), while the second high-affinity sys-
tem (the CHATS) is constitutively expressed.
The LATS, which appears to be constitu-
tively expressed, is most important at exter-
nal NO 3

− concentrations of more than 1 mM.
It has been suggested that NO 3

− is taken up
in both low- and high-affinity transport via
2 : 1 H+/NO 3

− symports (Glass et al., 1992).
In plants well supplied with N, NO 3

−

uptake systems are repressed, evidently to
limit amino acid synthesis to a set level cor-
responding to the N ‘demand’ for growth
(Imsande and Touraine, 1994; Gojon et al.,
1998). However, the nature of the key metab-
olites that are used by the plant to monitor
its N status and the molecular pathway
by which changes in these key metabolites
cause feedback repression of NO 3

− assimila-
tion are not known precisely.

Nutrient uptake is related to the size and
efficiency of the root mass and the energy
supply. Continuous N uptake during the
grain-filling period has been associated
with the ability to maintain root growth after
silking in maize (Mackay and Barber, 1986).
Whereas Rajcan and Tollenaar (1999) found
differences in NUE between an older and
newer maize hybrid, Duvick (1984) reported
no hybrid × N interactions for hybrids repre-
senting five decades of yield improvement
in the USA when grown at two N levels.

Because NUE in grain production
varies under different climatic, soil and
management conditions (Keating et al.,
1991; Sinclair and Muchow, 1995; Muchow,
1998), there is a need to determine the
minimum N requirement for a given yield
level to maximize NUE. Maximum NUE of
sorghum was smaller than that of maize (48
vs. 61 g per grain g−1 N absorbed), and was
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associated with a higher grain N concentra-
tion in sorghum (Muchow, 1994, 1998). An
approach to improving grain yield and the
efficiency of N utilization might be to geneti-
cally decrease the minimum grain N, but this
may be at the expense of the nutritive value
of the grain, e.g. the lowered protein content
may make the grain less desirable as a food or
feed (Muchow and Sinclair, 1994; Sinclair
and Muchow, 1995). Simulation modelling
can be used in defining both the crop
N demand and the potential losses from
the system under different environmental
conditions.

In wheat, grain N concentrations were
found to be negatively associated with grain
yield (Austin et al., 1980; Paccaud et al.,
1985; Feil and Geisler, 1988; Slafer et al.,
1990; Canevara et al., 1994; Calderini et al.,
1995). This negative association, despite the
net increase due to increased yields, high-
lights the dilution effect of increases in grain
yield (Calderini et al., 1999). However, it
must be mentioned here that grain N concen-
tration is a major, but not the only, measure
of grain quality, which may be increased
by selecting genotypes with better protein
composition (Canevara et al., 1994).

Nitrate Assimilation

NO 3
− assimilation starts with its reduction

to nitrite, catalysed by nitrate reductase
(NR), and is followed by nitrite reductase-
catalysed reduction of nitrite to NH4

+

and then the incorporation of NH4
+ into

amino acids, catalysed primarily by gluta-
mine synthetase and glutamate synthase
(reviewed in Crawford, 1995; Campbell,
1999; Stitt, 1999; Tishchner, 2000). NO 3

−

reduction occurs in the cytosol of cells in
both shoots and roots and uses NAD(P)H
as the source of reductant. However, there
is growing evidence that NR can also
be located outside the plasma membrane
(Campbell, 1999). Nitrite reduction occurs
in chloroplasts of green tissues and in
plastids of the roots with reduced ferre-
doxin as the reductant. In green tissues,
reductant originates from photosynthetic
electron transport and, in non-green tissues,

primarily from the oxidative pentose phos-
phate pathway. In addition to reductant,
organic acids are needed for NH4

+ incorpora-
tion into amino acids and maintenance of
cellular pH because NO 3

− reduction leads to
alkalinization.

The reduction of NO 3
− to nitrite cataly-

sed by NR represents the first enzymatic step
of primary N assimilation. The regulation of
NR is remarkably complex and is subjected
to mechanisms controlling both its synthesis
and its catalytic activity (Campbell, 1999).
The NR gene expression is induced by NO 3

−

and other factors, such as light or sugars
(Galangau et al., 1988; Pouteau et al., 1989;
Gowri et al., 1992; Li and Oaks, 1994;
Appenroth et al., 2000; Klein et al., 2000)
and is repressed by glutamine or related
downstream metabolites that are formed
from NO 3

− (Hoff et al., 1994). Regulation
of NR expression in leaves by NO 3

− and N
metabolism is completely overridden when
sugars fall below a critical level (Klein et al.,
2000). Genomic analysis revealed that NO 3

−

induces not just one but a diverse array of
novel metabolic and potential regulatory
genes (Wang et al., 2000).

An appraisal of the available literature
in the field reveals that, except for a few
studies (Pace et al., 1982; Kleinhofs and
Warner, 1990; Gojon et al., 1998), physiolog-
ical characterizations have never included
measurements of the in vivo capacity for
NO 3

− reduction in combination with NO 3
−

uptake. In spite of much previous work on
the subject (Hageman et al., 1980; Aslam
and Huffaker, 1982; Gojon et al., 1991), it is
still unknown whether and to what extent
the enzyme activities in vitro reflect NO 3

−

reduction rates in vivo (Kaiser et al., 2000).
The efficiency with which N is used

varies with plant species and with environ-
mental conditions. Several studies have
identified differences between C3 and C4

plants in N usage and photosynthetic nitro-
gen-use efficiency (PNUE) (photosynthesis
per unit leaf N), which result from their
different modes of carbon fixation (see Taub
and Lerdau, 2000, and references therein).
The ability of C4 plants to concentrate carbon
dioxide (CO2) at the site of carboxylation
allows them to attain higher photosynthetic
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rates of CO2 fixation for a given amount
of ribulose bisphosphate carboxylase
(RUBISCO) than C3 plants, resulting in a
higher PNUE. Variation in photosynthetic
rates among species, at a given level of leaf
N, has been attributed to differences in the
proportion of leaf N that is used for the
synthesis of photosynthetic enzymes rather
than for other leaf constituents, e.g. struc-
tural proteins, chlorophyll, nucleic acids,
etc. (Evans, 1989).

The effect of light on NR gene expres-
sion cannot be fully explained, and yet it is
possible to replace the light effect by glucose
or sucrose (see Tischner, 2000). Both photo-
synthetically active light and light acting
through phytochrome are known to influ-
ence the NR expression. Light operating via
phytochrome has been implicated in the
regulation of NR gene expression, particu-
larly in etiolated tissues (Melzer et al., 1989;
Appenroth et al., 2000). In green plants, the
light effect is probably mediated via sugars
produced by photosynthesis. This is further
supported by observations that diminished
CO2 assimilation caused by water stress led
to a decrease in NR transcripts (Foyer et al.,
1998), and exposure of plants to elevated
CO2 increased transcript levels (Larios et al.,
2001).

During the past decade, the post-
translational regulation of NR via protein
phosphorylation and dephosphorylation has
been intensively studied in response to
light/dark transitions (for a recent review,
see Kaiser et al., 1999). After transfer from
light to dark, NR is phosphorylated by an
NR kinase, and the subsequent binding of a
dimeric 14-3-3 protein converts phospho-
NR into a form sensitive to inhibition by
magnesium ion (Mg2+). Upon reillumination
of the leaves, phospho-NR is dephosphory-
lated by a protein phosphatase, rendering it
active, i.e. a form insensitive to inhibition by
free Mg2+. Through this process, NR in leaves
is rapidly inactivated in the dark and
activated in the light. If ethylenediamine
tetra-acetic acid (EDTA) chelates cations,
NR becomes fully active. This permits an
estimation of the activation state of the
NR, which reflects the percentage of non-
phosphorylated NR (NRact) in a tissue

extract. Maximum NR activity (NRmax) gives
the total amount of functional NR present in
the extract. However, the activation state of
NR is not always correlated with total NR
activity in leaves (Man et al., 1999). Only
under conditions optimal for photosynthe-
sis (light and high ambient CO2) are reliable
estimates of NO 3

− reduction rates in leaves
given by NRact (Kaiser et al., 2000). Under
other conditions, NRact considerably over-
estimates rates of NO 3

− reduction in vivo.
Rapid inactivation of leaf NR also

occurs in the light when CO2 fixation is pre-
vented by CO2 removal from the air (Kaiser
and Brendle-Behnisch, 1991; Lejay et al.,
1997) or stomatal closure in response to
drought (Foyer et al., 1998). Moreover,
feeding leaves with sugars in darkness was
shown to prevent a decrease in extractable
NR activity (De Cires et al., 1993) and to
increase the activation state of NR (Provan
and Lillo, 1999). Kaiser and Huber (1997)
have shown that artificial activation of NR in
the dark also stabilizes the steady-state pool
of NR. Thus, a high level of NR protein might
exist concomitantly with a high activation
state. On the other hand, low NR protein
levels appear to be compensated by a
high activation state, as suggested from
experiments with tobacco mutants having a
decreased number of functional nia genes
(Scheible et al., 1997), and the compensation
of low leaf NRmax in low-NO 3

−/long-day
grown barley by a higher activation state of
NR in the light and by significantly less dark
inactivation (Man et al., 1999).

Several lines of evidence have recently
indicated that NR is responsible for NO
production in leaves (Yamasaki, 2000).
NR also has the ability to convert NO to
the extremely toxic peroxynitrate (ONOO−)
under aerobic in vitro conditions. Like active
oxygen species, such as O2

− and hydrogen
peroxide (H2O2), active nitrogen species,
including NO and ONOO−, induce oxidative
damage to DNA, lipids, amino acids and
other biomolecules. Because NR activity
is highly regulated by transcriptional and
post-translational mechanisms in response
to many environmental conditions (Kaiser
et al., 1999), it is probable that such strict
regulation of NR is beyond that needed for N
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assimilation but it may be necessary for
regulating the production of NO and active
nitrogenous species. Mounting evidence
also suggests that NO is a novel regulator of
plant growth and development (Beligni and
Lamattina, 2001). Hence, NR-mediated NO
production has tremendous implications
for plant N metabolism and developmental
regulation.

Differential Efficiency of Nitrogen
Utilization in C3 and C4 Cereals

In C4 leaves, assimilation of NO 3
− to NH3

occurs in the mesophyll cells, while CO2

fixation in the C3 pathway occurs in the
bundle-sheath cells. In C3, both processes
occur in the mesophyll cells. But it is
not apparent why this would make a
difference in efficiency. This is an out-
standing riddle in NO 3

− assimilation that
needs to be resolved with innovative
approaches.

Since more NO 3
− accumulates in C3 rela-

tive to C4 cereals (Martin et al., 1983), it is
probable that the uptake of NO 3

− is more
active or more abundant in C3 than in C4

cereals or that NR is less active or less abun-
dant. Differential uptake of NO 3

− by intact
seedlings of barley and maize was noted by
Sehtiya and Goyal (2000). Oaks et al. (1990)
grew barley and maize seedlings with three
levels of NO 3

− (1, 5 and 20 mΜ) and mea-
sured the loss of NO 3

− from the medium, its
accumulation in leaf tissue, NR activity and
the levels of total soluble protein. It was
clearly shown that the uptake of NO 3

− , tissue
NO 3

− levels and NR were higher in barley
than in maize. At the same time, levels of
soluble protein were lower relative to those
found in maize. Thus, although there is
ample extractable NR in barley leaves, it is
not correlated to NUE. Similarly, an inverse
relationship has been observed between NR
activity and grain yield in maize (Reed et al.,
1980; Hirel et al., 2001).

Studies in our laboratory have con-
firmed that neither the NR amount nor its
activation state appears to limit in vivo NO 3

−

reduction in a C3 plant like barley. Instead,
(an)other metabolic factor(s) may actually be

limiting. Several metabolites could possibly
be involved in the process. Total leaf
concentrations of sugars, glutamine and
glutamate and of glucose-6-phosphate
correlated neither with the NR activity nor
with its activation state (Man et al., 1999).
Cytosolic NO 3

− levels in leaves also appear
to be homoeostatically controlled and are
hardly suboptimal.

In contrast, cytosolic NADH concentra-
tions are extremely low (0.5 µΜ) or barely
detectable (Heineke et al., 1991) and appear
to limit NO 3

− reduction in vivo in NO 3
− -

sufficient plants (Kaiser et al., 2000). In vivo
NO 3

− reduction rates matched in vitro NR
activity only when the leaves were exposed
to 5% CO2 during light (Kaiser et al., 2000).
Hence, one might assume that NAD(P)H
export from chloroplast to cytosol, e.g. via
the Pi/triose phosphate translocator, depends
on the rate of photosynthetic CO2 fixation
that is relatively much higher in C4 as
compared with C3 plants. The advantage of
C4 leaf morphology and its associated
metabolism would then be twofold: (i)
photorespiration is reduced relative to C3

plants; and (ii) there is an enhanced supply
of NADH in the mesophyll cells.

Although there are many differences in
the metabolism of C3 and C4 plants, a major
difference between these two patterns of
photosynthesis is the contribution of photo-
respiration to both carbon and N metabo-
lism. When photorespiration is reduced in
C3 plants either by increasing ambient levels
of CO2 or reducing levels of O2, the NUE is
enhanced, but this effect is not apparent
in C4 plants (Evans, 1989; Hocking and
Meyer, 1991). Oaks (1994) postulated that
the reduced efficiency of NO 3

− utilization in
C3 leaves was related to a carbon deficiency
caused by the inhibition of the mitochon-
drial pyruvate decarboxylase by photo-
respiratory NH4

+. However, this has not been
proved.

Yet another possibility might be that
photorespiratory metabolites act as inhibi-
tors of NR; however, attempts to prove this
have been unsuccessful so far (see Kaiser
et al., 2000). On the other hand, it has
been proposed that glycine oxidation during
photorespiration supports NO 3

− reduction in



C3 plants but not in C4 plants (Kumar and
Abrol, 1989).

Although not involved in the primary
net assimilation of N, the NH4

+ handled by
photorespiratory-N cycle in a C3 leaf could
be up to 20 times that handled by the reduc-
tion of NO 3

− (Canvin, 1990). This may be
interpreted to mean that the C3 plants have to
assimilate much more NH3 than C4 plants,
because the former have to reassimilate the
NH3 coming from photorespiration. How-
ever, our studies have shown that, even at
comparable rates of photosynthetic carbon
fixation, the maize leaves maintain the
superiority in NO 3

− reduction compared
with barley leaves, and maize NO 3

− reduc-
tion efficiency is not affected by high NH4

+

concentrations (A.S. Basra and S.S. Goyal,
unpublished). Moreover, Yin et al. (1998)
have shown that plant leaves can tolerate
high levels of NH3 without a negative influ-
ence on photosynthesis and transpiration.

Conclusion

Fertilization of agricultural systems is
essential in maintaining or increasing world
food production. Worldwide increases in
N fertilizer use are expected as global popu-
lation increases, particularly in developing
countries. In view of the poor NUE of cereal
production, it is vital to understand its
physiological and genetic basis in order to
create crop plants with enhanced NUE,
achieving maximal growth with minimal
fertilizer input. It is most important to
develop a successful breeding programme
of crop cultivars for low-input conditions.

There is little doubt that the more pre-
cisely we can determine the individual com-
ponents of a complex trait such as NUE, the
more rapid genetic progress will be. There
exists enough phenotypic and genotypic
variability for it to be exploited to identify
key components of yield improvement. Not
only must the traits be related to yield,
but they must also be highly heritable, have
low G × E interactions, and their expression
must not be compensated by other related
traits that negate their effect on grain yield.

Moreover, we need innovative simple tech-
niques to screen them in a quick, reliable and
relatively inexpensive manner. Not many
traits fulfil these requirements. In the case
of difficult-to-measure traits or traits with
low heritability or high G × E interactions,
molecular-marker technologies offer con-
siderable potential. The combination of
agronomic and physiological studies with
quantitative genetic approaches will allow
the use of molecular markers to identify key
structural or regulatory loci involved in
the expression of a quantitative trait and
the selection of genotypes more efficient
in terms of N use. Advances in genome
sequencing and mapping are allowing the
precise location of key genes controlling
the expression of desired traits – in other
words, the opportunity of translating ‘traits
to genes’. In turn, this technology will be of
great potential for plant breeders in carrying
out marker-assisted selection for improved
NUE in relation to yield.

Significant progress has been made in
dissecting the mechanisms of N uptake and
assimilation by plants at the molecular
level. As knowledge about the mechanisms
advances, cereal NUE may be improved in
the future by manipulating the pathways of
N uptake and assimilation through genetic
engineering and breeding approaches. The
new biotechnologies now allow the plant
breeder much more scope than has ever been
possible before for genotypic, and hence
phenotypic, modification. The benefits of
such developments would be substantial in
terms of income and food for the people,
reduced demand for N fertilizers and
reducing N losses, all of which would
also generate environmental benefits.
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Introduction

Regional multi-environment trials (MET)
are conducted every year for all major crops
throughout the world, constituting a costly
but essential step towards new crop geno-
type release and cultivar recommendation.
MET are essential because the presence of
genotype–environment interaction (GE), i.e.
differential genotype responses in different
environments, complicates cultivar evalua-
tion. Some important concepts, such as eco-
logical region, ecotype, mega-environment,
specific adaptation, stability, etc., all origi-
nate from GE. Were there no GE, a single
cultivar would prevail all over the world and
a single trial would suffice for cultivar eval-
uation (Gauch and Zobel, 1996). GE consti-
tutes a major challenge to cultivar improve-
ment, and MET data analysis constitutes an
important aspect of plant breeding. Because
of this, improvement in the methods used
for MET data analysis should be of interest
to the plant-breeding community. This chap-
ter deals with the biplot method, which has
been receiving attention in recent years.

Utilities of multi-environment trial
data analysis

The primary objective of MET is, of course,
to identify superior cultivars. The most

common practice used to achieve this end
is to compare the mean yield of genotypes
across test environments (usually year–
location combinations) represented in
the MET. The validity of this practice is,
however, based on the usually unstated
assumption that the environments in the
MET belong to a single mega-environment,
defined as a group of locations in which
the same set of cultivars perform best
across a number of years. Although usually
unstated, cultivar evaluation is always
specific to single mega-environments. If the
test environments are sufficiently heteroge-
neous, the cultivars that are selected based
on mean yield may not be the best in some
of the test environments; in extreme cases,
they may even not be the best in any of
the environments. Thus, a second utility
of MET data analysis, prior to cultivar
evaluation, should be to investigate the
relationships among the test environments
and the possibility of mega-environment
differentiation within the target environ-
ment. Identification of mega-environments
would allow exploitation of the GE that is
repeatable across years.

For a given mega-environment, geno-
types should be evaluated for mean yield (or,
in more general terms, mean performance)
and stability across test environments. The
ideal cultivar should be one that is both
high-yielding and stable. Mean performance
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is simply the mean across all environments,
whereas stability is a measure of variability
across environments. Most research has
focused on quantification of stability, and
numerous stability measures have been pro-
posed (Lin et al., 1986; Lin and Binns, 1994;
Kang, 1998). For a given mega-environment
and parallel to cultivar evaluation, individ-
ual test environments should be evaluated
for their ability to provide data that allow
for discrimination among genotypes and, at
the same time, for the extent to which they
represent the target mega-environment.

The ultimate reason for differential sta-
bility among genotypes and for differential
results from various test environments is
non-repeatable GE. Since this type of GE
cannot be effectively exploited, it must be
avoided. A fourth utility of MET data analy-
sis should be the development of a better
understanding of the causes of GE. Such
an understanding may help to avoid con-
founding plant responses to specific and rare
conditions with overall cultivar evaluation.

To summarize, MET data analysis should,
and potentially can, fulfil four functions: (i)
investigation of possible mega-environment
differentiation in the target environment; (ii)
selection of superior cultivars for individual
mega-environments; (iii) selection of better
test environments; and (iv) development of
a better understanding of the causes of GE.
An ideal MET data-analysis system should
accomplish all four tasks so that the infor-
mation contained in the MET is maximally
exploited and utilized.

Visualization of multi-environment trial data

With the belief that ‘a picture is worth a
thousand words’, many attempts have been
made to graphically present MET data. The
general pattern of such a graphical display
of MET data is to plot the mean yield
of each genotype against a measure of
stability, which can be any parameter that
is listed in Lin et al. (1986), among others.

Another popular presentation of MET
data is based on the Finlay and Wilkinson

(1963) model, in which the yield of each
genotype is plotted against the mean yield
of each environment and in which each
genotype is represented by a fitted straight
line. Philosophically, this type of graphical
display of MET data is very attractive, since
it clearly indicates differential genotype
responses to test environments. The prob-
lem with this method is that the environ-
mental means are not always a good, and are
frequently a poor, measure of environments,
such that the fitted lines in most cases only
account for a small fraction of the total GE
(Zobel et al., 1988).

A visualization method that is similar
to that of Finlay and Wilkinson (1963) but
which explains more GE was developed
by Gauch and Zobel (1997). In this method,
the nominal yields of genotypes are plotted
against the first interaction principal compo-
nent (IPC1) scores of environments, so that
each genotype is represented by a line with
the mean yield as the intercept and the
genotype IPC1 score as the slope. Such a plot
indicates the ‘which-won-where’ patterns of
the data, provided that the IPC1 explains
most of the GE.

The recently developed GGE-biplot
method (Yan et al., 2000, 2001) provides
a more elegant and useful display of MET
data. It effectively addresses both the
issue of mega-environment differentiation
and the issue of genotype selection for
a given mega-environment based on mean
yield and stability. It also allows environ-
ments to be evaluated just as well as
genotypes. In addition, it facilitates inter-
pretation of GE as genotypic factor by
environmental factor interactions (Yan and
Hunt, 2001). In the rest of the chapter, we
shall describe the rationale and applications
of the GGE-biplot methodology in MET data
analysis.

The GGE-biplot Methodology

The GGE-biplot methodology consists of
two concepts: biplot and ‘GGE’. Both
components are discussed below.
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The concept of biplot

The concept of biplot was first proposed by
Gabriel (1971). The main ideas follow. Any
two-way table or matrix X that contains n
rows and m columns can be regarded as the
product of two matrices A, with n rows
and r columns, and B, with r rows and m
columns. Therefore, matrix X can always be
decomposed into its two component matri-
ces A and B. If r happens to be 2, matrix X
is referred to as a rank-two matrix. Each
row in matrix A has two values that can be
displayed as a point in a two-dimensional
plot. Similarly, each column in matrix B has
two values and can also be displayed as a
point in a two-dimensional plot. When both
the n rows of A and the m columns of B are
displayed in a single plot, the plot is called
a ‘biplot’. Therefore, the biplot of a rank-two
matrix contains n + m points, as compared
with n × m values in the matrix per se,
and yet contains all the information of the
matrix.

One interesting property of a biplot is
that each of the n × m values can be precisely

recovered by viewing the n + m points
on the biplot. Assume that we have three-
genotype × three-environment data on yield
and that it is a rank-two matrix. After decom-
position of the data into its two component
matrices, the three genotypes and three envi-
ronments can be presented in a biplot, as
shown in Fig. 19.1. The yield of genotype i in
environment j, Yij, can be recovered by the
following formula:

Y OE OG OE OPij j ij i j ij= =cos α

where OGi (or OGi) is the absolute distance
from the biplot origin O to the marker of
the genotype i, OE j (or OEj) is the absolute
distance from the biplot origin O to the
marker of environment j, αij is the angle
between the vectors OGi and OE j and OPij

(or OPij) = cos αijOGi is the projection of
the marker of genotype i to the vector of
environment j. To compare yields of the
three genotypes in environment E1, we have

Y11 = (OE1) (cosα11)(OG1) = (OE1)(OP11)
Y21 = (OE1) (cosα21)(OG2) = (OE1)(OP21)
Y31 = (OE1) (cosα31)(OG3) = (OE1)(OP31)
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where OP11, OP21 and OP31 are the projec-
tions of the markers of the genotypes on to
the vector or its extension of environment
E1. Since OE1 is non-negative and common
to all genotypes, comparisons among Y11,
Y21 and Y31 can be performed by simply
visualizing OP11, OP21 and OP31. In our
example (Fig. 19.1), it is obvious that OP11 >
OP21 > OP31, and therefore, Y11 > Y21 > Y31.
Note that OP11 and OP21 are above average,
whereas OP31 is below average, since cos α11

and cos α21 are positive whereas cos α31 is
negative.

Approximation of any two-way table
using a rank-two matrix

A biplot is obviously an elegant display of a
rank-two matrix. In reality, however, it is
rare that a two-way data set is exactly a
rank-two matrix. Nevertheless, if a two-way
data set, e.g. the yield data of a number of
genotypes tested in a number of environ-
ments, can be approximated by a rank-two
matrix, the latter can then be displayed
in a biplot (Gabriel, 1971). The process of
decomposing matrix X into its component
matrices A and B is called ‘singular value
decomposition’ (SVD), the result of which
is r principal components (r equals the
smaller of n and m). If the first two principal
components (PC1 and PC2) explain a large
proportion of the total variation of X, X is
said to be sufficiently approximated by a
rank-two matrix and can be approximately
displayed in a biplot.

The concept of GGE

The concept of GGE originates from analy-
sis of MET of crop cultivars. The yield of a
genotype (or any other measure of genotype
performance) in an environment is a mixed
effect of genotype main effect (G), environ-
ment main effect (E) and GE. In normal
MET, E accounts for 80% and G and GE
each account for about 10% of the total
variation. For the purpose of cultivar
evaluation, however, only G and GE are

relevant (Gauch and Zobel, 1996). Further-
more, both G and GE must be considered
in cultivar evaluation: hence the term ‘GGE’
(Yan et al., 2000). Simultaneous examina-
tion of G and GE is, thus, an important
principle in cultivar evaluation.

Models for constructing a GGE biplot

The GGE biplot displays the GGE part of a
MET data set. Compared with other types
of biplots, a GGE biplot has the advantage
in that it: (i) displays most information
that is relevant to cultivar evaluation;
and (ii) displays only the information that
is relevant to cultivar evaluation. A GGE
biplot can be generated based on SVD of: (i)
environment-centred data; (ii) environment-
centred and within-environment standard
deviation-scaled data; and (iii) environment-
centred and within-environment standard
error-scaled data.

Singular value decomposition of
environment-centred data

The model for a GGE biplot based on SVD of
environment-centred data is:

Y Yij j i j i j ij− = + +λ ξ η λ ξ η ε1 1 1 2 2 2 (19.1)

where:

Yij is the mean yield of genotype i in
environment j
Y j is the mean yield across all
genotypes in environment j
λ1 and λ2 are the singular values for
the first and second principal
components, PC1 and PC2,
respectively
ξi1 and ξi2 are the PC1 and PC2 scores,
respectively, for genotype i
ηj1 and ηj2 are the PC1 and PC2 scores,
respectively, for environment j
εij is the residual of the model
associated with genotype i in
environment j

To display the PC1 and PC2 in a biplot, the
equation is rewritten as:

Y Yij j i j i j ij− = + +ξ η ξ η ε1 1 2 2
* * * *
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where ξ λ ξin n in
* = 1 2/ and η λ ηjn n jn

* = 1 2/ , with
n = 1, 2. Although all scaling methods are
equally valid, this method has the advan-
tage that PC1 and PC2 have the same unit,
which is the square root of the original unit,
such as t ha−1 for yield. This property is
important when genotypes are visually
evaluated by both mean yield and stability
(discussed later).

A GGE biplot is generated by plotting
ξ i1
* and η j1

* against ξ i2
* and η j 2

* , respectively.
Although this type of biplot has been used
previously in MET data analysis (e.g. Cooper
et al., 1997), methods for the utilization of
the information contained in a biplot to its
fullest extent became available only recently
(Yan, 1999; Yan et al., 2000).

Singular value decomposition of within-
environment standard deviation-scaled data

The second model that can be used to
generate a GGE biplot is:

( )Y Y sij j j i j i j ij− = + +/ λ ξ η λ ξ η ε1 1 1 1 1 2 (19.2)

where sj is the standard deviation for geno-
type means for environment j, and all other
parameters are the same as in Equation 19.1.
This model removes the units of the data
and assumes an equal ability of all environ-
ments to discriminate among genotypes,
which may be an undesired property
for genotype–environment data analysis.
It is useful for analysing genotype–trait
data, however, in which different traits use
different units.

Singular value decomposition of within-
environment standard error-scaled data

The third model is based on:

( )Y Y zij j j i j i j ij− = + +/ λ ξ η λ ξ η ε1 1 1 1 1 2 (19.3)

where zj is the standard error for environ-
ment j. Since zj can be estimated only with
replicated data, this model can only be used
when replicated data are available. It is pre-
ferred for all types of two-way data when
replicated observations are available, since
it adjusts any heterogeneity among testers,
which can be environments, traits, etc.

Alternative models for generating
a GGE biplot

To make sure that the abscissa of the GGE
biplot represents the mean yield of the
genotypes, Yan et al. (2001) proposed the
following model:

Y Y bij j j i i j ij− = + +α λ ξ η ε1 1 1 (19.4)

where αi is the main effect of genotype
i, bj is the regression coefficient of the
environment-centred yield of genotypes in
environment j against the genotype main
effects, λ1 is the singular value for the
PC1 from subjecting the residue of the
regressions to SVD, ξi1 and ηj1 are the
scores for genotype i and environment j
on PC1, respectively, and εij is the residual
associated with genotype i in environment
j. The regressions bjαi in Equation 19.4
correspond to PC1 in Equation 19.1, and
the PC1 in Equation 19.4 corresponds to
PC2 in Equation 19.1. Equations 19.2 and
19.3 can also have their counterparts of
Equation 19.4.

Biplots based on Equation 19.4 are more
interpretative than Equation 19.1, since its
abscissa of the biplot represents exactly
the genotype main effects and, therefore,
its ordinate is a measure of stability (or
variability, or GE). This advantage, however,
is offset by the explanation of a smaller
percentage of the total GGE variation (Yan
et al., 2001). A recent finding is that biplots
based on Equation 19.1 can also be used
to approximately indicate the main effects
and stability of the genotypes through axis
rotation (discussed later). Therefore, the
alternative models will not be further
discussed in this chapter.

Biplot Analysis of Multi-environment
Trial Data: an Example

This section exemplifies biplot analysis of
MET data using the 1993 Ontario winter-
wheat performance trial data. Efforts will be
made to demonstrate how a GGE biplot can
be used to address the four major utilities of
MET data analysis.
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The steps in biplot analysis

The sample data are presented in Table
19.1, which contains the mean yield of
18 winter-wheat genotypes tested in nine
Ontario locations in 1993. The trials were
replicated four to six times at each location,

but we present only the mean data for the
purpose of illustration. Generating a GGE
biplot based on Equation 19.1 from Table
19.2 data involves the following steps:

1. Centring the data, i.e. subtracting the
respective environmental means from each
of the cells.
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Environments

Genotypes BH93 EA93 HW93 IN93 KE93 NN93 OA93 RN93 WP93 Mean

ANN
ARI
AUG
CAS
DEL
DIA
ENA
FUN
HAM
HAR
KAR
KAT
LUC
M12
REB
RON
RUB
ZAV

4.5
4.4
4.7
4.7
4.4
5.2
3.4
4.9
5.0
5.2
4.3
3.2
4.1
3.3
4.4
4.9
3.8
4.2

4.2
4.8
4.6
4.7
4.6
4.5
4.2
4.7
4.7
4.7
4.5
3.0
3.9
3.9
4.7
4.7
5.0
4.7

2.9
2.9
3.1
3.4
3.5
3.0
2.7
4.4
3.5
3.6
2.8
2.4
2.3
2.4
3.7
3.0
3.4
3.6

3.1
3.5
3.5
3.9
3.9
3.8
3.2
4.0
3.4
3.8
3.4
2.4
3.7
2.8
3.6
3.9
3.4
3.9

5.9
5.7
6.1
6.2
5.8
6.6
5.3
5.5
6.0
5.9
6.1
4.2
4.6
4.6
6.2
6.1
4.8
6.6

4.5
5.2
5.0
5.3
5.4
5.0
4.3
5.8
4.9
5.3
5.3
4.3
5.2
5.1
5.1
5.3
5.3
4.8

4.4
5.0
4.7
4.2
5.2
4.0
4.2
4.2
5.0
3.9
4.9
3.4
2.6
3.3
3.9
4.3
4.3
5.0

4.0
4.4
3.9
4.9
4.1
4.3
4.1
5.1
4.5
4.5
4.1
4.1
5.0
3.9
4.2
4.3
4.9
4.4

2.7
2.9
2.6
3.5
2.8
2.8
2.0
3.6
2.9
3.3
3.2
2.1
2.9
2.6
2.9
3.0
3.4
3.1

4.0
4.3
4.2
4.5
4.4
4.4
3.7
4.7
4.4
4.5
4.3
3.2
3.8
3.5
4.3
4.4
4.3
4.5

Table 19.1. Yield data (t ha−1) of 18 genotypes in nine environments.

Genotypes PC1 PC2 Environments PC1 PC2

ANN
ARI
AUG
CAS
DEL
DIA
ENA
FUN
HAM
HAR
KAR
KAT
LUC
M12
REB
RON
RUB
ZAV

−0.14
−0.17
−0.19
−0.43
−0.32
−0.31
−0.60
−0.51
−0.40
−0.37
−0.17
−1.35
−0.73
−0.94
−0.20
−0.31
−0.11
−0.48

−0.44
−0.22
−0.41
−0.31
−0.23
−0.07
−0.51
−0.79
−0.22
−0.39
−0.32
−0.18
−0.86
−0.10
−0.06
−0.05
−0.42
−0.37

RN93
NN93
WP93
IN93
HW93
BH93
EA93
KE93
OA93

0.19
0.44
0.54
0.66
0.77
0.97
0.76
1.11
0.85

−0.72
−0.63
−0.59
−0.36
−0.32
−0.23
−0.08
−0.62
−0.96

Table 19.2. PC1 and PC2 scores for each genotype and each environment used in constructing the
GGE biplot.



2. Subjecting the environment-centred
data to SVD, which results in singular values
– genotype and environment scores for each
of the n principal components, n being the
number of environments. SVD is a complex
mathematical operation that decomposes a
matrix into two component matrices using
the least-squares method. Fortunately, it
becomes a routine function in all major
statistical analysis systems. The SAS
package (SAS Institute, 1996) has an SVD
function in the IML or MATRIX procedure,
so that performing the SVD of a matrix
takes no more than a single statement. The
PRINCOMP procedure of SAS, which per-
forms principal-component analysis, gives
outputs in which the singular values are tied
with the genotype (row) eigenvectors.
3. Partitioning the singular value into
genotype and environment scores for each
of the principal components. Theoretically,
the singular value can be partitioned in any
proportion, but symmetrical partitioning is
preferred because it results in the same
units for both the genotype scores and the
environment scores and for all principal
components.
4. Plotting the PC1 scores against the PC2
scores to generate a biplot. Biplots using
other principal components are also possi-
ble. The plotting can be done using a spread-
sheet, but the abscissa and ordinate must be
drawn to scale.
5. Labelling the biplot with the genotype
and environment names, which can be a
very tedious job.
6. Adding supplementary lines to facili-
tate visualization and interpretation of the
biplot.

As can be seen, although the biplot is
an elegant tool for visualizing MET data,
the process is tedious, if not difficult, even
for well-trained biometricians. Fortunately,
a Windows application, GGEbiplot, was
recently created (Yan, 2001), which fully
automated the biplot analysis process. All
biplots presented below are the direct out-
puts of this software. In these biplots,
the genotypes are labelled with lower-case

letters and the environments with upper-
case letters.

Visualizing the performance of different
genotypes in a given environment

This is a direct application of the biplot
theory described in Fig. 19.1 and associated
descriptions. To visualize the performance
of different genotypes in a given environ-
ment, say, BH93, draw a line that passes
through the biplot origin and the marker of
BH93; this may be called the BH93 axis. The
genotypes will be ranked according to their
projections on to the BH93 axis (Fig. 19.2).
Thus, the order of yields of the genotypes
in BH93 was: kat < m12 < ena < luc < ann
< . . . < har ≈ cas < fun. The line passing
through the biplot origin and perpendicular
to the BH93 axis separates genotypes that
yielded below the mean (kat, m12, ena, luc
and ann) from genotypes that yielded above
the mean (all other genotypes) in BH93.

Visualizing the relative adaptation of a given
genotype in different environments

Analogous to the above, to visualize the
relative performance of a given genotype,
say, rub, in different environments, draw a
line that passes through the biplot origin
and the marker of rub, which may be called
the rub axis. The environments would be
ranked along the rub axis in the direction
towards the marker of rub (Fig. 19.3). Thus,
the relative performance of rub in different
environments was: RN93 > NN93 > WP93 >
IN93 > BH93 > EA93 > KE93 > OA93. The
line passing through the biplot origin and
perpendicular to the rub axis separates
environments in which rub yielded below
the mean (OA93, KE93 and EA93) from
environments in which rub yielded above
the mean (all other environments, except
BH93). Environment BH93 was right on
the perpendicular line, implying that rub
yielded near the mean in BH93.
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Visual comparison of two genotypes in
different environments

Biplot comparison of two genotypes is an
extension of the basic biplot principle. To
compare two genotypes, connect the two
genotypes to be compared, say, aug and rub,
with a straight line (called a connector line)
and draw a line that is perpendicular to the

connector line and passes through the
biplot origin (Fig. 19.4). This perpendicular
line separates environments where aug
yielded better than rub from environments
where rub yielded better than aug. Thus,
Fig. 19.4 indicates that aug was better than
rub in OA93, KE93, EA93 and BH93, and
rub was better than aug in the other five
environments. Based on the basic principle

296 W. Yan and L.A. Hunt

Fig. 19.2. Ranking of the genotypes based on their performance in environment BH93.

Fig. 19.3. Ranking of the environments based on the relative performance of genotype rub.



of biplot geometry described earlier, the two
genotypes would yield exactly the same in
environments whose markers fall on the
perpendicular line. If all environments fall
on the same side of the perpendicular line,
the genotype with the environments on its
side would yield better than the other
genotype in all environments. If the two
genotypes are spatially close, they are likely
to have yielded similarly in all or most of
the environments.

Visual identification of the best genotype(s)
for each environment

A further extended application of the biplot
geometry is to visually identify the highest-
yielding genotypes for each of the environ-
ments in a single step. For this purpose, the
genotypes that are located far away from
the biplot origin are connected with straight
lines so that a polygon or vertex hull is
formed with all other genotypes contained
within the vertex hull (Fig. 19.5). The vertex
genotypes in our example are fun, zav, ena,
kat and luc. These genotypes are the most
responsive genotypes; they are either the
best or the poorest genotypes in some or all
of the environments. Perpendicular lines to

the sides of the vertex hull are drawn,
starting from the biplot origin, to divide the
biplot into five sectors or quadrants, each
having a vertex genotype. The beauty of Fig.
19.5 is this: the vertex genotype for each
quadrant is the one that gave the highest
yield for the environments that fall within
that quadrant. Thus, genotype fun gave the
highest yield in environments RN93, NN93,
WP93, IN93, HW93, BH93 and EA93 and
genotype zav gave the highest yield in
environments OA93 and KE93. The other
vertex genotypes, i.e. ena, kat and luc, did
not give the highest yield in any of the
environments. Actually, they were the
poorest genotypes in some or all of the
environments.

Now we explain why the above state-
ments are valid. According to the section
‘Visual comparison of two genotypes in dif-
ferent environments’, the line perpendicular
to the polygon side that connects genotypes
luc and fun facilitates the comparison
between luc and fun; fun yielded higher than
luc in all environments because all environ-
ments are on the side of fun. Likewise, the
line perpendicular to the polygon side that
connects genotypes zav and fun facilitates
the comparison between zav and fun;
fun yielded higher than zav in seven
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environments that fall into the fun sector
because they are on the side of fun. Within
the fun sector, fun has the longest vector
(distance from biplot origin to the marker of
a genotype); it therefore gave higher yields
than other genotypes in these seven environ-
ments, for reasons discussed in the section
‘Visualizing the performance of different
genotypes in a given environment’. Collec-
tively, fun gave the highest yield in envir-
onments that fell in its sector. Using the
same reasoning, zav was the best genotype in
environments KE93 and OA93.

Visualizing groups of environments

Another utility of Fig. 19.5 is that the
environments are grouped based on the
best genotypes and we have two groups
of environments: KE93 and OA93 as one
group, with zav being the highest-yielding
genotype, and the other seven environ-
ments as another group, with fun being the
highest-yielding genotype.

The environment groups suggest dif-
ferent mega-environments. In our example,
KE93 and OA93 represent eastern Ontario
and the other environments represent

western and southern Ontario. The hypothe-
sis that eastern Ontario is a different mega-
environment from the rest of Ontario for
winter-wheat production was tested and
confirmed using 1989–2000 Ontario winter-
wheat performance trial data (Yan, 1999).
Assuming two mega-environments, the
variance component for genotype–mega-
environment interaction explained 80% of
the total GE (Yan, 1999).

Visualizing the mean performance and
stability of genotypes

Once mega-environments are defined, culti-
var selection should be specific to individ-
ual mega-environments. For a given mega-
environment, genotypes are evaluated based
on mean performance (such as mean yield)
and stability across environments. Assuming
that the nine environments in our example
belong to a single mega-environment, a
‘mean’ environment can be defined in
the biplot, using the mean-environment
PC1 and PC2 scores of all environments.
The mean yield of the genotypes can then
be approximated by nominal yields of the
genotypes in that mean environment.
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Fig. 19.5. The polygon view of the GGE biplot indicating the best genotype(s) in each environment and
groups of environments.



In Fig. 19.6, a line is drawn that passes
through the biplot origin and the mean
environment, which is marked by an oval
at its positive end. This line will be called
the mean-environment axis. Another line
is drawn that passes through the biplot
origin and is perpendicular to the mean-
environment axis. These two lines consti-
tute ‘the mean-environment coordination’.

The projections of the genotypes to the
mean-environment axis approximate the
mean yield of the genotypes. Thus, the mean
yield of the genotypes is in the following
order: fun > cas ≈ har > . . . > rub > ann >
luc > ena > m12 > kat. This order is highly
consistent with the actual mean yield of
the genotypes (Table 19.1). The parallel lines
in Fig. 19.6 facilitate ranking the genotypes
based on their predicated mean yield. Since
the biplot contains both G and GE and since
the two axes of the mean-environment
coordination are orthogonal, if projections of
the genotypes to the mean-environment axis
approximate the mean yield of the geno-
types, projections of the genotypes on to the
perpendicular axis must approximate the GE
associated with the genotypes. The longer
the projection of a genotype, regardless
of direction, the greater the GE associated
with the genotype, which is a measure

of variability or instability of the genotype
across environments. Thus, the performance
of genotypes luc and fun is highly variable
(less stable), whereas genotypes ron and reb
are highly stable.

It should be pointed out that stability
per se is not necessarily a positive factor.
High stability is desirable only when associ-
ated with a high mean yield. A genotype
with high stability is highly undesirable if it
is associated with a low mean yield; it is
simply a genotype that is consistently poor.
It is even less desirable than genotypes with
low stability but high mean yield.

An ideal genotype is one that has
both high mean yield and high stability. The
centre of the concentric circles in Fig. 19.7a
represents the position of an ‘ideal’ geno-
type, which is defined by a projection on
to the mean-environment axis that equals
the longest vector of the genotypes that had
above-average mean yield and by a zero
projection on to the perpendicular line
(zero variability across environments). A
genotype is more desirable if it is closer to
the ‘ideal’ genotype. Thus, genotypes cas
and har are more desirable than genotype
fun, even though the latter had the highest
mean yield. The low-yielding genotypes
kat, m12, luc, ena and ann, are, of course,
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Fig. 19.6. The mean-environment coordination showing the mean yield and stability of each of the
genotypes.



undesirable because they are far away from
the ‘ideal’ genotype.

Visualizing the discriminating ability and
representativeness of environments

Although MET are conducted primarily for
genotype evaluation, they can also be used
in evaluating environments. An ideal envi-
ronment should be highly differentiating
of the genotypes and at the same time
representative of the target environment.
Assuming that the test environments used
in the MET are representative samples of
the target environment, the ideal environ-
ment should be located on the mean-
environment axis. The centre of the
concentric circles represents the ideal
environment, which has the longest vector
of the test environments that had positive
projections onto the mean environment axis
(Fig. 19.7b). An environment is more desir-
able if it is closer to the ‘ideal’ environment.
Therefore, BH93, EA93, HW93 and IN93
were relatively desirable test environments,
whereas OA93 and RN93 were relatively
undesirable test environments.

Discussion and Conclusions

Strength of the GGE-biplot approach

The GGE-biplot approach graphically dis-
plays genotype main effect and genotype–
environment interaction of a MET, which
are the only two parts of yield variation that
are relevant to genotype evaluation and
mega-environment identification. Assuming
that the GGE of a MET is sufficiently
approximated by the first two principal
components, all individual genotype–
environment relationships in the MET
should be displayed by the GGE biplot.
Such a biplot graphically addresses three of
the four utilities of MET data analysis listed
in the introduction of this chapter, namely:
(i) investigating possible mega-environment
differentiation in the target environment; (ii)
selecting superior genotypes for individual

mega-environments; and (iii) selecting
better test environments. In addition, the
GGE biplot also facilitates pairwise geno-
type comparisons. The GGE biplot does
not directly address the fourth utility of the
MET data analysis, i.e. understanding the
causes of GE. To fulfil this task, information
other than yield per se is necessary. Once
such information is available, the genotype
and environment scores can be related
to genotypic and environmental factors,
so that the observed genotype–environment
interactions can be explained in terms
of interactions between genotypic factors
and environmental factors (Yan and Hunt,
2001). Therefore, the GGE biplot is an ideal
approach for MET data analysis.

Constraints of the GGE-biplot approach

All methods have their limitations. The
limitations of the GGE biplot lie in four
aspects. First, it requires balanced data;
secondly, it may explain only a small
portion of the total GGE; thirdly, it lacks
a measure of uncertainty; and, fourthly,
although elegant, GGE biplot analysis is
tedious to perform using conventional
tools. Now that the GGEbiplot software is
available, the fourth constraint is no longer
an issue. Once the data are prepared, all
functions are just a ‘mouse-click’ away. All
the figures presented in this chapter, along
with many other options, are the direct
outputs of this software.

Although quite common, unbalanced
MET data are really not a problem of the
GGE-biplot approach; they are a problem of
experimental design and execution, which
create problems for all kinds of analyses. The
GGEbiplot software offers two options on
this problem. It allows generation of a
balanced subset, which can be used in
GGE-biplot analysis; alternatively, missing
cells are automatically replaced by mean
yields of the respective environments. In
either case, unbalancedness means that part
of the information contained in the data
cannot be utilized effectively. Therefore,
experimental design and execution should
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be improved to prevent missing cells as soon
as possible.

The GGE biplot may explain only a
small proportion of the GGE when the geno-
type main effect is considerably smaller than
the GE and when the GE pattern is complex.
In such cases, the GGE biplot consisting of
PC1 and PC2 may not be sufficient to explain

the GGE, even though the most important
pattern of the MET is already displayed. To
remedy this problem, the GGEbiplot soft-
ware offers options for viewing biplots of
PC3 vs. PC4, PC5 vs. PC6, etc.

Unlike conventional approaches, which
allow calculation of probability for a par-
ticular hypothesis, the GGE-biplot approach
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Fig. 19.7. Comprehensive evaluation of genotypes and environments. (a) Comparison of genotypes with
the ‘ideal’ genotype for both mean yield and stability. (b) Comparison of environments with the ‘ideal’
environment based on both discriminating ability and representativeness of the target environment.



does not have a measure of uncertainty.
Therefore, the GGE biplot is better used as
a hypothesis-generator rather than as a
decision-maker (Yan et al., 2001), and
hypotheses based on biplots should be
tested using conventional statistical meth-
ods. For example, biplots based on individ-
ual years of Ontario winter-wheat perfor-
mance trials suggested that eastern Ontario
sites and other sites of Ontario belong
to different mega-environments, and this
hypothesis was tested and confirmed by
variance component analysis (Yan, 1999).
Sometimes, the biplot distance of two geno-
types, relative to the biplot size, may be suffi-
ciently informative about the significance of
the difference between two genotypes or two
environments.

Other applications of the GGE-biplot
approach

The GGE-biplot methodology was devel-
oped for MET data analysis. It is a generic
method, however. It has been successfully
used in analysing genotype–trait data (Yan
and Rajcan, 2002), diallel-cross data (Yan
and Hunt, 2002), host genotype–pathogen
race data (W. Yan, unpublished), etc. The
GGE-biplot methodology and the GGEbiplot
software described in this chapter should
thus be useful for the graphical presentation
of all types of two-way data that conform
to an entry–tester data structure. A demo
version of the GGEbiplot software can be
downloaded at www.ggebiplot.com.
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Introduction

The presence of genotype–environment
interaction (GEI) in a multi-environment
trial (MET) is expressed either as incon-
sistent responses of some genotypes with
respect to others due to the alteration of
the ordering of the genotypes from one
environment to another (GEI with rank
change or crossover interaction (COI)) or
as changes in the absolute differences
between genotypes without rank change
(GEI without rank change or non-crossover
interaction (non-COI)).

Early approaches to the analysis of GEI
included the conventional, two-way fixed-
effects (FE2W) model, with sum to zero con-
straints, and the simple linear regression of
genotype yields on the environment means.
The FE2W model expresses the empirical
mean, y ij , of the ith genotype (i = 1, 2, . . . , g)
in the jth environment (j = 1, 2, . . . , e) with n
replications in each of the g × e cells as:

( )y ij i j ij ij= + + + +µ τ δ τδ ε (20.1)

where µ is the grand mean across all geno-
types and environments and is estimated by
y .., τi is the additive effect of the ith geno-
type defined as a deviation of the genotype
mean from the overall mean and is esti-
mated by y yi . ..− , which satisfies constraint

$τ i
i

=∑ 0. Similarly, δj is the additive effect

of the jth environment estimated by y yj. ..− ,
which satisfies constraint $δ j

i

=∑ 0. Also,

(τδ)ij is the non-additivity, i.e. GEI, of the ith
genotype and the jth environment estimated
as the residual y y y yij i j− − +. . .. after fitting
the main effects. The (τδ)ij satisfies con-
straints ( ) ( ) ( )τδ τδ τδ

ij ij ij
jiji

= = =∑∑∑∑ 0.

The ε ij term is the mean of the errors
contributing to measurements on the ith
genotype in the jth environment. The ε ij

are assumed NID(0, σ2/n) where σ2 is the
pooled within-environment error variance,
assumed to be homoscedastic. For the
complete random effects two-way (RE2W)
model, τi, δj and (τδ)ij are assumed to be nor-
mally and independently distributed, with
variances σ τ

2 , σδ
2 and σ τδ

2 , respectively. From
the GEI perspective, the FE2W and RE2W
models are unparsimonious, the analysis is
uninformative and the (g − 1) × (e − 1) inde-
pendent parameters of the GEI are difficult
to interpret.

Fisher and MacKenzie (1923), who ana-
lysed data from an experiment evaluating
12 potato cultivars under each of six soil-
fertilization treatments, were the first
authors to propose breaking down the
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response into a series of multiplicative terms
fitted by least squares; however, this work
was apparently forgotten for many years.
Yates and Cochran (1938) proposed breaking
down the GEI into one multiplicative
term and a deviation therefrom, examining
whether the GEI is a linear function of
the additive environmental component, that
is, (τδ)ij = ξiδj + dij, where 1 + ξi is the linear
regression coefficient of yields of the ith
genotype on the environmental mean and
dij is a deviation. This regression approach
expresses the GEI simply as heterogeneity of
slopes and was later used by Finlay and
Wilkinson (1963) and slightly modified by
Eberhart and Russell (1966).

Tukey (1949) proposed a test for the GEI
in which the (τδ)ij term is a constant multi-
plied by the product of the main effects
of genotypes and environments, (τδ)ij = λτiδj.
Mandel (1961) generalized Tukey’s (1949)
model by letting the GEI term be the product
(τδ)ij = λαiδj for regression of genotype
simple effects on environment main effects
or (τδ)ij = λτiγj for regression of environment
simple effects on genotype main effects.
Either of these consists of a ‘bundle of regres-
sion lines’, which may be tested for concur-
rence (i.e. in the first case, whether the αi are
proportional to the τi or, in the second case,
whether the γj are proportional to the δj) or
non-concurrence. Proportionality of theαi to
the τi is a special case of regression of geno-
types on the environmental mean, in which
the regression lines all intersect at one point.

The Mandel (1961) tests for concurrent
and non-concurrent regression lines parti-
tion the GEI into one degree of freedom
(d.f.) for the concurrence of genotype (or
environment) regressions on environment
(or genotype) main effects (this is the same as
Tukey’s (1949) one d.f. for non-additivity),
g − 2 d.f. for the non-concurrence of
genotype regressions, e − 2 for the non-
concurrence of site regressions and (g − 2)
(e − 2) d.f. for the remainder of the GEI.
Cornelius et al. (1996) suggested Mandel’s
(1961) analysis as a diagnostic for choice of
multiplicative model form.

Freeman (1973) cited Williams (1952) as
the first researcher to link the FE2W model
with principal-component analysis (PCA)

and showed that the GEI term can be repre-
sented by the sum of eigenvalues of a matrix.
Gollob (1968) and Mandel (1969, 1971)
introduced the linear–bilinear model (LBM),

y ij i j k ik jk ijk

t
= + + + +

=
∑µ τ δ λ α γ ε

1
(20.2)

Where λk is a scale parameter or singular
value for the kth bilinear (multiplicative)
component. The λk are ordered, i.e. λ1 ≥ λ2 ≥
. . . ≥ λt. Further, the αik and γjk are elements
of the left and right singular vectors, res-
pectively, contributing to the kth bilinear
(multiplicative) term. The αik represents
genotypic sensitivities to a hypothetical
environmental factor the level of which, in
the jth environment, is represented by the
element γjk in the right singular vector for
the kth component. Elements of the singular
vectors for genotypes and environments (αik

and γjk) are subject to normalization con-
traints, Σ Σi ik j jkα γ2 2 1= = , and to orthogon-
ality constraints, Σ Σi ik ik j jk jkα α γ γ′ ′= =0 for
k ≠ k′. When Equation 20.2 is saturated, the
number of bilinear terms is t = min(g − 1,
e − 1) and, for any smaller value of t, the
model is said to be ‘truncated’. The word
‘truncated’ here is used not in the sense of
having a truncated distribution, but, rather,
in the sense of truncating the string of
bilinear terms at something less than the
number of terms that will saturate the
model.

Mandel (1971) computed the number of
degrees of freedom associated with the sum
of squares (SS) due to each of the first three
bilinear terms in Equation 20.2 by a Monte
Carlo study, and Johnson and Graybill
(1972) found that Mandel’s (1971) results
were close to the exact values. Gabriel (1978)
showed that a least-squares (LS) solution for
model parameters in Equation 20.2 can be
obtained by taking the estimates of the
bilinear terms as the t largest components
of the singular value decomposition (SVD)
of the matrix [ ] [ ]Z = = − − +z y y y yij ij i j. . .. ,
with the additive (linear) effects µ, τi and δj

estimated as we have previously given for
their estimates in the FE2W model (Equation
20.1).

If the components of the SVD of Z are
arranged in decreasing order with respect
to the singular values, the first component

306 J. Crossa and P.L. Cornelius



gives a rank-one matrix that, in an LS sense,
approximates matrix Z; the first two compo-
nents of the SVD give a rank-two matrix that
approximates Z, etc.

Zobel et al. (1988) and Gauch (1988)
named Equation 20.2 the ‘additive main
effects and multiplicative interaction’
(AMMI) model. They further introduced
a data-splitting and cross-validation pro-
cedure for determining the number of multi-
plicative components to retain in a truncated
AMMI model.

The AMMI model and four other LBMs
and their LS estimates were described and
unified in one general methodology by
Cornelius et al. (1996). These authors
described various statistical tests for the
significance of the bilinear terms and
mentioned the possibility of using shrinkage
estimates of these models for improving the
prediction of the g × e cells. The four models
that can be derived from the AMMI model
are:

genotypes regression model (GREG)

y ij i k ik jk ijk

t
= + +

=
∑µ λ α γ ε

1

sites (i.e. environment) regression
model (SREG)

y ij j k ik jk ijk

t
= + +

=
∑µ λ α γ ε

1

completely multiplicative model
(COMM)

y ij k ik jk ijk

t
= +

=
∑ λ α γ ε

1

shifted multiplicative model (SHMM)

y ij k ik jk ijk

t
= + +

=
∑β λ α γ ε

1

The LS estimates of the additive effects
of these models and the elements of the
residual matrix Z are:

AMMI $ , $ , $
.. . .. .µ τ δ= = − = −y y y yi i j j

y z y y y yij ij i j.. .. . .., = − − +
SREG $ ,. .µ j j ij ij jy z y y= = −
GREG $ ,. .µ i i ij ij iy z y y= = −
COMM z yij ij=
SHMM z y yij ij= − = −$, $

..β β

λ α γk k kk

t
$ $

=
∑

1

Seyedsadr and Cornelius (1992) dev-
eloped the SHMM model, which is a
reparameterization of the Tukey (1949)

model for testing non-additivity. The singu-
lar vectors for genotypes and environments
for the ordered components are called
‘primary effects’ (αi1, γj1), ‘secondary effects’
(αi2, γj2), and so on. The LS solution for $β
requires an iterative algorithm, because the
solutions for the bilinear terms are the t
largest components of the SVD of matrix
Z = [zij], where, in this case, z yij ij= − $β, but
$ $ $

..β λ α γ= −
=

∑y k k kk

t

1
, where $ $α αk i ikg= −1Σ ,

and $ $γ γk j jke= −1Σ . Thus, Z depends on $β, but
$β depends on the SVD of Z. Consequently,
the LS solution does not exist in closed
form. Moreover, the value of $β changes if
the number of bilinear components, t, is
changed.

Apparently, the SHMM model was the
first LBM that, along with other statistical
tools, was used for identifying subsets
of genotypes or environments in which
genotypic rank changes are negligible
(Cornelius et al., 1992, 1993b; Crossa and
Cornelius, 1993; Crossa et al., 1993, 1995).
Later, the SREG model was suggested as a
better model to use for identifying such sub-
sets of environments (Crossa and Cornelius,
1997) (but not for identifying such subsets of
genotypes). The SREG model is very appeal-
ing for breeders and agronomists because
its multiplicative terms contain the main
effects of genotypes plus the GEI, making it
possible to assess both the general and the
specific adaptation of genotypes. Crossa and
Cornelius (1997) have used the SREG model
for clustering sites without genotypic rank
change under heterogeneity of within-site
error variances. Yan et al. (2000) used the
biplot of the first two bilinear components
obtained from the SREG model to graphi-
cally identify specific ‘winner’ genotypes in
certain subsets of environments.

The GREG model with t = 1 is a repara-
meterization and with t > 1 a generalization
of the linear regression model of Yates
and Cochran (1938), Finlay and Wilkinson
(1963) and Eberhart and Russell (1966),
except that we replace their estimator of δj

with an LS solution and further impose
orthonormality constraints, as in the AMMI
model. Typically, the LS estimators of
the γj1 are very highly correlated with the
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Finlay–Wilkinson/Eberhart–Russell estima-
tor y yj. ..− of δj.

Cornelius and Seyedsadr (1997) defined
the general linear–bilinear model (GLBM)
as:

y xij kk

m

kij k ik jk ijk

t
= + +

= =
∑ ∑β λ α γ ε

1 1

where the xkij are known constants and the
βk parameters (regression coefficients) for
the linear terms and the λk, αik and γjk in
the bilinear terms are parameters to be esti-
mated (αik and γjk subject to the previously
defined orthonormality constraints).

In matrix notation, the GLBM can be
expressed as:

Y X A G E= + ′+
=

∑ β k kk

m
Λ

1

where [ ]Y = y ij , [ ]Xk kijx= , [ ]E = ε ij , Λ =
diag(λk, k = 1, 2, . . . , t), λ1 ≥ λ2 ≥ . . . ≥ λt,
A = (α1, . . . , αt), G = (γ1, . . . , γt) and A′A =
G′G = It. Define Z Y X= −

=
∑ $

( )β k t kk

m

1
, where

$
( )β k t is the LS estimate of βk when the

fitted model contains t bilinear terms
(t ≤ rank(Z)). Then the first t components of
the SVD of Z provide the LS estimates of
parameters in the bilinear terms. An LS
solution for the linear effects (the $β k) is
given by any solution to the equation:

C TI=

where the elements of I are the $β k , the hkth
element of C is ( )C trhk h k hij kij

ji

x x= ′ = ∑∑X X

and the kth element of T is T trk =

( )[ ]′ − ′ = −

 


∑∑ ∑

=
X Y A Gk kij

ji
ij u ui uju

t
x y$ $ $ $ $ $Λ λ α γ

1
.

Here tr(·) denotes the trace of the (square)
matrix given as the argument.

An LBM is said to be ‘balanced’ (a BLBM)
if Z = PYQ, where P and Q are projection
matrices free of the bilinear effects. Under
this condition Tk reduces to x ykij ij

ji

∑∑

and, thus, in a BLBM, an LS solution for I
ignoring the bilinear effects (i.e. for t = 0) is
also a solution for I, given any value for
t ≤ rank(Z). Provided there are no missing
cells, AMMI, GREG, SREG and COMM are
BLBMs (COMM actually being without any
linear terms at all), but SHMM is not.

In this chapter, we review the use of
the SHMM and SREG models for finding
clusters of environments with negligible
genotypic COI and examine some of the
unconstrained and constrained non-COI
solutions for finding the ‘distance’ between
pairs of environments. We also summarize
results of ‘shrinkage’ estimators of LBMs
developed as analogues of best linear unbi-
ased predictors (BLUPs) and justified by a
Bayesian argument, and further show empir-
ical evidence that shrinkage estimators
are usually better predictors than the best
truncated LBM and sometimes better than
BLUPs of a RE2W model with interaction.

SHMM for Assessing COI

Since   the   early   1990s,   theoretical   and
practical studies have shown the utility of
the SHMM model for identifying subsets
of environments and genotypes without
genotypic rank change (Cornelius et al.,
1992; Crossa and Cornelius, 1993; Crossa
et al., 1993, 1995, 1996; Abdalla et al., 1997;
Trethowan et al., 2001). Cornelius et al.
(1992), observing results obtained with
SHMM1 (SHMM with one multiplicative
term), defined sufficient conditions for the
absence of significant genotype COI in a set
of environments and/or genotypes.

1. SHMM with t = 1 (SHMM1) must be an
adequate model for fitting the data. This
implies that the multiplicative components,
beyond the first, are not significantly differ-
ent from zero.
2. The primary effects of environments, γj1,
are all of like sign.

The SHMM model satisfying the above
condition 2 has the following two propor-
tionality properties:

1. Differences between genotypes in any
single environment are proportional to geno-
type differences in any other environment.
2. Differences between environments with
respect to the performance of any single
genotype are proportional to environmental
differences with respect to performance of
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any other genotype (but, for environment
differences, proportionality constants can be
negative).

The second proportionality restriction is
irrelevant for the case of genotypic non-COI
and is relaxed in the SREG1 model (Crossa
and Cornelius, 1997).

When SHMM1-predicted values, $y ij =
$ $ $ $β λ α γ+ 1 1 1i j , are plotted against the primary
effects of environments, $γ j1 , the graph con-
sists of a set of regression lines, one for each
genotype, all of which concur (i.e. intersect)
at the point (0, $β). For a non-COI SHMM1,
the $γ j1 are all of like sign (or zero) and thus
the point of intersection is a point either at
the boundary (if one $γ j1 0= ) or outside (left
or right of) the region containing the plotted
points.

If the $γ j1 have different signs (some posi-
tive, some negative), then the point of inter-
section is within the region containing the
plotted points and a complete reversal of
rank order of genotypes is displayed on the
right, as compared with the left, of the point
of intersection. If the intersection point is far
outside the region containing the plotted
points, then the genotype regression lines
appear very nearly parallel, implying that
the data are essentially additive (provided
that the SHMM1 adequately fits the data).

SHMM clustering of environments
with non-COI

Typically, when SHMM is fitted to the
entire set of data from an MET, in addition
to primary effects, one must include sec-
ondary and perhaps even higher-order
effects if an adequate fit is to be achieved.
The clustering strategy is to divide the envi-
ronments into subsets such that significant
variation captured as secondary, tertiary,
etc., effects, when SHMM is fitted to the
entire data set, can be expressed as primary
effects in separate analyses of data from
the subsets. In doing this clustering, the
measure of ‘distance’ between two environ-
ments is taken as the residual mean square
(RMS) after fitting SHMM1 (RMS(SHMM1))

to the data from the two environments
subject to a non-COI constraint, namely,
that both $γ j1 must be either non-positive
or non-negative. RMS(SHMM1) is obtained
as [RSS(SHMM1)]/f, where RSS stands for
residual sum of squares and f is the d.f.,
namely, f = g − 2 + v, where v is the number
of additional constraints imposed to
achieve a non-COI solution.

It is a property of SHMM that, if e < g,
RSS(SHMMe − 1) = RSS(SREGe − 1) in uncon-
strained LS solutions (Seyedsadr and
Cornelius, 1992). Thus, for a subset of e = 2
environments, this property provides
a closed-form solution for the distance,
provided that the two $γ j1 values are of like
sign. Otherwise a constrained solution must
be computed. The constraint, if needed, is
imposed by putting $γ j1 0= for one of the
two environments and $γ j1 1=± for the other
environment. Two different methods for
doing this have been devised, namely, a con-
strained LS method and a constrained SVD
method. In the constrained LS method, we
put $γ j1 0= for the environment that has the
smaller value of ( )y yij j

i

−∑ .

2
(moreover,

this value becomes the distance value)
and put $γ j1 1=± for the other environment.
Other properties of the solution are $

.β =y j

and thus $ $
.y yij j= =β for the environment

with $γ j1 0= and the quantities $ $λ α1 1i are
chosen such that $ $ $ $y yij i j ij= + =β λ α γ1 1 1 for
j, now representing the environment for
which $γ j1 1=± .

The constrained SVD solution chooses $β
such that the first right singular vector ($γ1) of

[ ] [ ]Z = = −z yij ij
$β is either (±1, 0)′ or (0, ±1)′.

A sufficient condition for this is that the two
columns of Z must be orthogonal to one
another. There are two solutions for $β that
will satisfy this. For either solution, the
right singular vectors are (±1, 0)′ and (0, ±1)′,
either in that order or in the reverse order.
The final choice among the four combina-
tions of one of the two possible $β values and
one of the two possible environments for
which to put $γ j1 0= will be the combination
for which the quantity ( )y ij

i

−∑ $β
2

is

smallest. For further details, we refer the
reader to Crossa et al. (1996). The residual
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d.f. for either the constrained LS or con-
strained SVD solution fitted to data from two
environments are g − 1. We doubt that the
choice of method for computing constrained
solutions will ever be a critically important
issue in clustering environments or geno-
types into non-COI groups.

After the distances for all possible
pairs of environments have been computed,
a dendrogram is constructed using the com-
plete linkage (furthest neighbour) clustering
method. The final step is to analyse the
subsets of data for each of the clusters
suggested by branches of the dendrogram
for adequacy of fit of SHMM1 (constrained
if necessary to obtain a non-COI solution).

A constrained SVD non-COI SHMM1

solution for a subset containing more than
two environments can usually be computed
by iteratively alternating between computa-

tion of $
$

$
β

α

α
=

∑

∑

i ih
i

i
i

y1

1

and computation of the

$α i1 as elements of the first left singular
vector of [ ] [ ]Z = = −z yij ij

$β , where the
subscript h denotes the environment to
have its primary effect ($γh1) put equal to
zero and the y ij used in computing Z are
only those for the particular subset being
analysed. If what at first seems to be the
most reasonable choice for environment
h fails to give a non-COI solution (which
occurs if the non-zero $γ j1 in the constrained
solution are not all of like sign), another
choice for environment h may be tried. We
doubt if it is possible to find a solution for $β
that will simultaneously constrain primary
effects of more than one environment. If
such a solution appears to be necessary,
computation of a constrained LS solution
may be mandatory. A Newton–Rapshon
algorithm for computing a constrained LS
solution for any number of environments to
have primary effects put equal to zero can
be found in Crossa et al. (1996). Despite the
more complicated algorithm and under-
lying mathematics, we prefer constrained
LS solutions to constrained SVD solutions.

For a set (or subset) containing g geno-
types and e environments, the d.f. of RSS
(SHMM1) is ge − g − e in an unconstrained

solution, ge − g − e + 1 = (g − 1)(e − 1) in a
constrained SVD solution and ge − g − e + v
in a constrained LS solution, where v is the
number of environments with their $γ j1 0= in
the constrained LS solution.

The SREG Model and its Relationship
with the COI

It has been shown that SREG with one
multiplicative term (SREG1) is a viable
alternative to SHMM1 as a model for identi-
fying groups of environments without geno-
type COI, because SREG1, like SHMM1, also
displays proportionality of genotype differ-
ences in different environments, but, unlike
SHMM1, SREG1 does not impose proportion-
ality of environmental differences with resp-
ect to performance of genotypes (Crossa and
Cornelius,  1997).  Proportionality  of  envi-
ronmental differences with respect to differ-
ent genotypes is not relevant to the issue
of genotype COI and SREG’s relaxation of
these constraints may allow larger non-COI
clusters to be obtained. Furthermore, SREG
can be quite satisfactorily used to deal with
heterogeneity of within-environment error
variances by the simple device of rescaling

the y ij by dividing by
s

n
j
2

, where s j
2 is the

error mean square within the jth environ-
ment. (So also can SHMM, but the result has
the unpalatable property that SHMM fitted
to the scaled data is no longer a SHMM
when back-transformed to the original scale
(Crossa and Cornelius, 1997).)

In the SREG1 model, it is the deviations
of genotype yields (y ij) from environment
means y j. that are modelled by the bilinear
term. The fitted bilinear effects, $ $ $λ α γ1 1 1i j , can
be plotted as a set of regression lines, one
for each genotype, with the $y j1 as regressor
variable and with zero intercepts. Because
these regression lines all intersect at the zero
point on the $γ j1 scale, the graph, like the
graph of SHMM1, does not display genotype
COI within the region of the plotted points
( $ $ $λ α γ1 1 1i j , $γ j1) if, and only if, the $γ j1 are either
all non-negative or all non-positive. Addi-
tion of the environment mean to the plotted
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ordinates ( $ $ $λ α γ1 1 1i j ) gives the SREG1 predic-
ted response $ $ $ $

.y yij j i j= +λ α γ1 1 1 . If the $y j1 are
plotted against the $γ j1 , the plotted points
for any given genotype no longer fall on a
straight line, but, if plotted points for adja-
cent values of $γ j1 are connected with line
segments, the figure displays an overlaid set
of broken-line graphs, one for each geno-
type, which, although they are not straight
lines, nevertheless display no genotype COI
within the region of plotted points.

For SREG1 clustering of environments,
the measure of distance between two envi-
ronments is RMS(SREG1). For a subset of
data with only two environments, RSS
(SREG1) = RSS(SHMM1) for both uncon-
strained and constrained LS non-COI
solutions. Consequently, provided that con-
strained LS solutions are used for non-COI
solutions (when needed), dendrograms for
SREG and SHMM clustering are identical.
Thus, subsets that the dendrogram suggests
as groups to be evaluated for acceptability
of fit of the one-term model are the same
subsets whether SREG1 or SHMM1 is used,
but the less parsimonious SREG1 may some-
times give an acceptable fit to a subset to
which SHMM1 does not acceptably fit.

Unlike SHMM1, the constrained LS
non-COI SREG1 solution for a subset con-
taining more than two environments exists
in closed form (Crossa and Cornelius, 1997).
For a subset consisting of sub-subset S1 con-
taining e1 environments that are to have their
$γ j1 0= and sub-subset S2 containing e2 envi-
ronments that are to have their $γ j1 uncon-
strained, the constrained LS SREG1 solution
is to put $

.µ j jy= for all of the environments in
the subset, but obtain $λ1 , $α i1 and the non-
zero $γ j1 as the first component of the SVD of

[ ] [ ]Z2 2= = −z y yij ij j. , where the y ij and y j.

used in computing Z2 are only those from
environments in sub-subset S2.

We have recently developed a con-
strained SVD solution for SREG1 by putting
$ $

.µ βj jy= + , where $β is a constant chosen to
force a particular $γ j1 0= (P.L. Cornelius and
J. Crossa, unpublished result). The useful-
ness of such constrained SVD SREG1 solu-
tions for the SREG clustering problem has
not been evaluated.

For a set (or subset) containing g geno-
types and e environments, the d.f. of RSS
(SREG1) is ge − g − 2e + 2 = (g − 2)(e − 1) in
an unconstrained solution, (g − 2)(e − 1) + 1
in the above described constrained SVD
SREG1 solution and (g − 2)(e − 1) + v in a
constrained LS solution, where v is the
number of environments with their $γ j1 0= in
the constrained LS solution. Note that v = e1,
where e1 is as previously defined.

SHMM Clustering of Genotypes
with Non-COI

Cornelius et al. (1993b) used SHMM clus-
tering to group 41 winter-wheat (Triticum
aestivum L.) genotypes into non-COI
clusters. The MET included seven envir-
onments. Thirty-five of the genotypes were
grouped into nine clusters, leaving six geno-
types unclustered because the procedure
did not enter them into any cluster to which
a non-COI SHMM1 would give a satisfactory
fit. Constrained non-COI solutions, when
needed, were computed using constrained
SVD solutions. Other examples of SHMM
clustering of genotypes have been reported
by Crossa et al. (1996) and Abdalla et al.
(1997).

Crossa et al. (1996) compared con-
strained LS and constrained SVD solutions
when constrained solutions were needed
and found, for the particular example, that
choice of method for computing constrained
solutions made no difference with respect to
the dendrogram or final acceptable clusters
obtained. To our knowledge, this is the only
published example in which consequences
of the choice of method for computing
constrained non-COI solutions has been
studied.

SHMM clustering of genotypes is essen-
tially by the same strategy as for clustering
environments. The distance between two
genotypes is defined as RMS(SHMM1), using
a constrained solution, if necessary, when
SHMM1 is fitted to the subset of data deriv-
ing from only those two genotypes evaluated
in the entire set of environments. Note that it
is still the $γ j1 (and not the $α i1) that must be
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either all non-positive or all non-negative to
have a non-COI solution.

The unconstrained SHMM1 solution for
RSS(SHMM1) can be obtained in closed form
using the result RSS(SHMM1) = RSS(GREG1)
if the set of data being analysed contains
only two genotypes. Because when cluster-
ing genotypes the number of environments
will always exceed two, constrained non-
COI solutions will not exist in closed
form. They can be computed as previously
described for subsets containing more than
two environments in the context of SHMM
clustering of environments. The residual d.f.
is e − 2 for an unconstrained solution, e − 1
for a constrained SVD solution and e − 2 + v
for a constrained LS solution, where v is the
number of environments with their $γ j1 0= in
the constrained LS solution. Further details
can be found in Crossa et al. (1996).

Use of SREG as a model for identifying
groups of genotypes without significant
genotype COI is not practical because, for
a pair of genotypes, the matrix [ ]Z = =zij

[ ]y yij j− . is of rank one and an uncon-
strained SREG1 will fit the values exactly,
resulting in the distance RSS(SREG1) = 0.
Thus, it is only for pairs of genotypes for
which a constrained non-COI solution is
needed that a non-zero distance will be
obtained. Consequently, SREG1 clustering
of genotypes will, typically, not provide a
unique starting-point for the clustering.
When clustering genotypes, the d.f. of RSS
(SHMM1) in unconstrained and constrained
solutions for a subset containing more than
two genotypes will be by the same formulae
as previously given for subsets containing
more than two environments in the context
of clustering environments.

Tests for Lack of Fit of SHMM1

and SREG1

Inadequacy of SHMM1 or SREG1 (either
of these constrained, if necessary) for
modelling data from a subset of environ-
ments and/or genotypes may be tested
statistically using the FR and/or FGH (FGH1

or FGH2) tests.

The FR test (Cornelius et al., 1992, 1996)
of RMS(SHMM1) or RMS(SREG1) is from the
fit of SHMM1 or SREG1 (constrained if neces-
sary) to the subset against the MET’s pooled
error mean square. The d.f. of RMS(SHMM1)
or RMS(SREG1) are as given earlier in this
chapter.

The FGH tests are sequential tests of
the bilinear components. Significance of one
or more components beyond the primary
effects implies inadequacy of inclusion of
only one bilinear term. Letting SSk denote
the sequential sum of squares (on an obser-
vation basis) due to the kth bilinear term, the
FGH2 test is constructed as:

F
SS

GH
1

2 2= k

ku s

where s2 is the pooled error mean square
and u1k = E(SSk/σ2|λk = 0, λk − 1 is large).
The denominator d.f. are the pooled error
d.f., and the numerator d.f. are approximated
as 2 1

2
2
2u uk ik/ , where u k2

2 = V(SSk/σ2|λk = 0,
λk − 1 is large).

A function that will closely approxi-
mate u1k and u2k for use in FGH tests of
bilinear components in SREG is given by Liu
and Cornelius (2001). For doing so, always
put u1k and u2k equal to their approximating

functions for ( )E $θ1 and ( )SD $θ1 , respec-

tively, with their r and c defined as
r = max(g − 1, e) − k + 1 and c = max(g − 1,
e) − k + 1. The approximating functions are
valid for r ≤ 199 and c ≤ 149. For AMMI,
SREG, GREG and COMM, the approximating
functions given by Liu and Cornelius (2001)
supersede the functions previously given by
Cornelius et al. (1996).

For tests of bilinear components in
SHMM, use the SHMM approximating func-
tions for u1k and u2k given in the appendix of
Cornelius et al. (1996) if max(g, e) < 100 and
min(g, e) < 20. For cases that violate either of

these bounds, use the formulas for ( )E $θ1 and

( )SD $θ1 from Liu and Cornelius (2001), with r

and c defined as r = max(g, e) − k + 1 and
c = max(g, e) − k + 1. Use of functions given
by Liu and Cornelius (2001) for SHMM
analysis tests the SHMM sequential bilinear
terms as if they were bilinear terms in
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COMM. This should give sufficiently
accurate results for SHMM if r or c is large.

The FGH1 derives from a method of
moments approximation of the distribution
of the quantity 1 + [SSk/(pooled error SS)] as
the reciprocal of a beta random variable. The
P value can be computed directly from the
approximate beta distribution, but, because
plant breeders will generally find the value
of an F statistic more interpretable than the
value of a beta statistic, we routinely trans-
form the beta statistic to an F statistic (with
d.f. equal to twice the values of the beta dis-
tribution). For details, see Cornelius et al.
(1992, 1996) and Cornelius (1993). If the
pooled error d.f. are large, as they generally
are in a MET, P values for FGH1 and FGH2 are
typically almost identical and thus there is
ordinarily no need to compute both.

Example of the SHMM and SREG
Clustering of Environments with

Non-COI in Maize MET

The data come from an international maize
(Zea mays L.) MET with nine genotypes

(g = 9) evaluated in a randomized complete
block design with four replicates in each
of 20 environments (e = 20). The SHMM
and SREG analyses showed that the first
three components were statistically dif-
ferent from zero (P < 0.05) by the FGH1 test
(Table 20.1, results for all environments).
Since the second and third components
were statistically significant, SHMM1 will
not adequately fit the data from the entire
set of environments. Moreover, even the
fitted SHMM1 (unconstrained) has its point
of concurrence within the region containing
the plotted points and thus the fitted
SHMM1 itself displays genotype COI.
This is observed in Fig. 20.1, where three
environments have $γ j1 0< and all others
have $γ j1 0> . Genotype 8 performed worst in
the environment with the largest primary
effect, but was one of the best two genotypes
in the environment with the smallest (most
negative) primary effect.

Figure 20.2 depicts the dendrogram of
the 20 environments when RMS(SHMM1)
was used as distance measurement and
clustering was by the complete linkage (fur-
thest neighbour) method. The dichotomous
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FR FGH1

Environments Model form Secondary effect Tertiary effect Secondary effect Tertiary effect

All

{1, 3, 8, 10}

{1, 3, 10}

{2, 4, 5, 6, 7, 8, 9,
11, 12, 13, 14, 15,
16, 17, 18, 19, 20}
{2, 6, 9, 12, 13, 18}

{4, 5, 7, 11, 14, 15,
16, 17, 19, 20}
{4, 5, 11, 14, 15, 16}

{7, 17, 19, 20}

SHMM
SREG
SHMM
SREG
SHMM
SREG
SHMM
SREG

SHMM
SREG
SHMM
SREG
SHMM
SREG
SHMM
SREG

0.0000
0.0016
0.0001
0.0552
0.6952
0.6595
0.0000
0.0027

0.1106
0.2134
0.0254
0.2481
0.3524
0.8113
0.5342
0.4529

0.0244
0.0685
0.4757
0.4383
0.9984
0.9984
0.0418
0.1042

0.3641
0.7129
0.7313
0.7067
0.8925
0.9186
0.9748
0.9581

0.0000
0.0042
0.0000
0.0481
0.4550
0.1245
0.0000
0.0040

0.2229
0.1455
0.0004
0.1982
0.1615
0.8642
0.2717
0.2172

0.0037
0.0322
0.2532
0.2155
0.9984
0.4059
0.0076
0.0287

0.4686
0.6899
0.4335
0.4839
0.7020
0.8521
0.9850
0.9717

FR test of RMS(SHMM1) or RMS(SREG1) against the pooled error mean square. FGH1 test is a sequential
test of the bilinear components.

Table 20.1. Probability values (P) for the FR and FGH1 tests for the secondary and tertiary effects of the
SHMM and SREG models for subsets of environments suggested by the dichotomous splitting of the
dendrogram of Fig. 20.2.



splitting suggested by Crossa et al. (1993) for
finding subsets of environments with geno-
typic non-COI consisted of fitting SHMM1

to subsets defined by the branches of the
dendrogram, starting at the first split of
the entire set of data into the two subsets
of environments, {1, 3, 8, 10} and {2, 4, 5, 6, 7,
9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}. For
the first of these subsets, the lack of fit of
SREG1 is marginally significant (P = 0.0552)
when tested by the FR (Cornelius et al., 1996)
test, and the SREG secondary effect is signifi-
cant at P < 0.05 when tested by the FGH1 test
(Table 20.1). For the latter of these two sub-
sets, there is highly significant lack of fit of
both SHMM1 and SREG1, detected by both FR

and FGH1 tests (Table 20.1). Continuing with
the dichotomous splitting, the adequacy of
SHMM1 for fitting subsets {1, 3, 10}, {2, 6, 9,
12, 13, 18} and {4, 5, 7, 11, 14, 15, 16, 17, 19,
20} is tested. According to the FR and the

FGH1 tests, SHMM1 is adequate for fitting the
first two subsets, but not for the last one.
However, SREG1 did adequately fit all three
subsets. Thus, we have here an example
of a subset that is acceptably modelled by
a non-COI SREG1, but not by a non-COI
SHMM1.

In Fig. 20.3, the consistent response of
the nine genotypes across the ten environ-
ments of subset {4, 5, 7, 11, 14, 15, 16, 17, 19,
20} is clearly depicted through the overlaid
broken line SREG1 graphs that do not cross
over. The residuals for the two models, both
with unconstrained solutions, were RMS
(SHMM1) = RSS(SHMM1)/(ge − g − e) =
14,006,110/71 = 197,269 and RMS(SREG1) =
RSS(SREG1)/(g − 2)(e − 1) = 9,795,021/63 =
155,476. Further splitting of {4, 5, 7, 11,
14, 15, 16, 17, 19, 20} gives subsets {4, 5,
11, 14, 15, 16} and {7, 17, 19, 20}, both of
which can be adequately modelled by either
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Fig. 20.1. SHMM1 model fitted by least squares (unconstrained) to nine genotypes and 20 environments
($ .β=34). The scatter points are empirical cell means plotted using the digits identifying the genotype as
plotting symbols and the regression lines, one for each genotype, plot the SHMM1 predicted cell means.
The regression lines from top to bottom in the region to the right of the point of concurrence (0, $β ) are
genotypes 4, 5, 6, 3, 2, 9, 7, 1 and 8. This rank order for SHMM-predicted yields is completely reversed
to the left of the point of concurrence.



non-COI SHMM1 or non-COI SREG1 (Table
20.1).

The ten highest values of RMS(SHMM1)
(the distance) for pairs of environments with
unconstrained and constrained LS and SVD
non-COI solutions are shown in Table 20.2.
As expected, based on the results obtained
from the SHMM1 and SREG1 clustering (Fig.
20.2), environment 8 is the most frequently
occurring environment in pairs of environ-
ments with large distance values.

To illustrate constrained and uncon-
strained solutions for a pair of environments
needing a constrained solution for their
distance, SHMM1 fitted without constraint
to the data from environment 8 (y .8 4027= ,
$ .,γ8 1 07285=− ) and environment 11 (y .11 =
5307, $ .,γ11 1 06849= ) has its point of concur-
rence within the region containing the plot-
ted data points (Fig. 20.4). In the constrained

LS solution (Fig. 20.5), the environment that
had a positive primary effect ($ .,γ11 1 06849= )
in the unconstrained solution has its pri-
mary effect put equal to zero ($ ,γ11 1 0= ), thus
moving the point of concurrence to the
right boundary of the region containing
the plotted points. In this constrained LS
solution, $

,γ8 1 1=− .
Both the SHMM and SREG clustering of

environments have been extensively used
for finding associations between interna-
tional testing environments used by the
International Maize and Wheat Improve-
ment Center (CIMMYT) for maize, bread (T.
aestivum L.) and durum (Triticum turgidum
var. durum) wheat and triticale (Tritico-
secale Wittm.) METs. Abdalla et al. (1997)
used SHMM clustering of environments
and genotypes and found that durum-wheat
genotypes with similar genetic backgrounds
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Fig. 20.2. Dendrogram of SHMM and SREG clustering of 20 environments using RMS(SHMM1) =
RMS(SREG1) as distance measurement. Arrows denote the subsets of environments where SREG1 gave
an adequate fit. The subset indicated by the lower arrow on the figure had to be subdivided once more in
order for SHMM1 to give an adequate fit.



formed non-COI clusters, but COI more
frequently occurred with genotypes deri-
ved from different genetic backgrounds,

especially those with different levels of
resistance to specific diseases. Conse-
quently, genotypes from diverse genetic
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Fig. 20.3. SREG1 model fitted to nine genotypes and a subset of 10 environments. The rank order of
genotypes with respect to the overlaid broken-line graphs is 6, 4, 5, 7, 9, 3, 1, 2, 8.

Fig. 20.4. Unconstrained SHMM1 solution for nine genotypes in two environments (8 and 11).



backgrounds tended to cluster into different
non-COI groups. Recently, Trethowan et al.
(2001) used the SHMM and SREG cluster-
ing of environments to study long-term
associations between international sites for a
drought-tolerant bread-wheat MET. Results
of this study demonstrated the usefulness
of this approach for identifying key testing
environments around the world.

Shrinkage Estimates of Linear–Bilinear
Models Analogous to BLUPs

Simulation studies of Cornelius (1993)
and Cornelius et al. (1996) for the
AMMI model showed that the inter-

action mean squared errors (IMSE),
$ $ $λ α γ λ α γk ik jkk

p

k ik jkk

p

ji

−


 




= =
∑ ∑∑∑

1 1

2

,

where p = rank(Z), can be reduced if the
LS estimate of λk, i.e. $λ k , is replaced by a
shrinkage estimate of the form Sk

$λ k . The
authors found that the IMSE of the shrink-
age estimates were smaller than the IMSE
of the best AMMI truncated model. These
shrinkage estimators are of the form signal
divided by (signal  +  noise) and are similar
to the functions of variance components
that occur in computation of empirical
BLUPs of cell means in a RE2W model and
can be justified by a Bayesian argument.

The conventional RE2W model with
interactions for the mean of the ith genotype
in the jth environment is given in Equation
20.1 with the τi, δj and (τδ)ij considered ran-
dom. Under normality, independence and
a balanced data set, it is easy to compute
empirical BLUPs of the realized perfor-
mance levels, µij = µ + τi + δj + (τδ)ij, of the
genotypes in the environments where they
were tested (i.e. empirical BLUPs of cell
means). The BLUP estimates of the main
effects of τi, δj and (τδ)ij for a balanced data set
are:
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Not only do the ordinary LS estimates of
the main effects of genotypes (y yi .. ...− ) and
environments (y yj. . ...− ) contribute to the
BLUP of the ith genotypic main effect and
of the jth environmental main effect, res-
pectively, but each also contributes to the
BLUP of the GEI. Then, for $

...µ =y , the BLUP
of the cell mean is given by:

( ) ( ) ( )[ ]$µ τ δ τδ+ + + =BLUP BLUP BLUPi j ij

( )$
.. ...µ

σ σ
σ σ σ

τδ τ

τδ
2

τ

+
+

+ +
− +

n ne
n ne

y yi

2 2

2 2
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Pair of
environments

Degrees of
freedom

Residual mean
square

SVD non-COI SHMM1 solution
5
3
8
8
3
4
8
8
8
8

8
4

17
12
11
8

15
13
18
11

8
8
8
8
8
8
8
8
8
8

1,534,929.83
1,538,867.47
1,546,730.47
1,621,562.28
1,630,314.30
1,636,836.50
1,118,858.50
1,197,429.00
1,278,760.50
1,697,992.90

LS non-COI SHMM1 solution
3

15
4
3
3
8
8
8
8
8

17
18
8
8

15
12
15
18
13
11

7
7
8
7
7
8
8
8
8
8

1,445,676.58
1,473,768.72
1,474,787.63
1,486,411.11
1,491,284.81
1,600,516.22
1,809,543.62
1,861,644.18
1,137,120.80
1,327,651.00

SVD, singular value decomposition constrained
solution; LS, least-squares constrained solution.

Table 20.2. The ten largest distances (RMS
(SHHM1)) for unconstrained and constrained SVD
and LS solutions. The degrees of freedom for the
unconstrained solutions are the number of geno-
types minus two, whereas for the constrained
solution they are the number of genotypes minus
one.
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In computing empirical BLUPs of cell
means, the functions of the estimated
variance components that multiply the LS
estimates of the main effects of genotypes,
environments and the GEI, namely
(y yi .. ...− ), (y yj. . ...− ) and (y y y yij i j. .. . . ...− − − ),
respectively, are ‘shrinkage’ factors that can
be estimated as:
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where MS = mean square.
For a saturated AMMI model, the

estimates of the interaction parameters are

such that λ α γk ik jk ij i j
k

t

y y y y= − − +
=

∑ . .. . . ...
1

,

i.e. the BLUP of a cell mean is a shrinkage
estimate of AMMI. It is reasonable to sup-
pose, however, that an optimum strategy
for obtaining shrinkage estimates of AMMI,
COMM, SREG, GREG and SHMM should
include different shrinkage factors for the
different bilinear components.
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Fig. 20.5. Constrained LS SHMM1 solution for nine genotypes in two environments (8 and 11).



Cornelius and Crossa (1995, 1999)
and Cornelius et al. (1993a, 1996) used a
procedure of shrinking each bilinear compo-
nent by an estimate of the signal to (signal
+ noise) ratio of its eigenvalue, i.e. the kth
bilinear component $ $ $λ α γk ik jk is shrunk as
Sk k ik jk

$ $ $λ α γ . Then the sum of shrunken
bilinear terms is Sk k ik jk

k

$ $ $λ α γ∑ , where $λ k , $α ik

and $γ jk are the corresponding LS estimates.
The shrinkage factor Sk is computed as:

( )S u s n
Fk k k k

k

= − = −$ && / / $
&&

λ λ2 2 2 1
1

where s2 is the error mean square, &&uk is
a value equal to, or that estimates, the
expected error variance absorption by the
kth bilinear term, i.e. ( )[ ]n k kE $ /λ λ σ2 2 2− ,

and && $ / &&F n u sk k k= λ2 2, provided that &&Fk >1 and
therefore Sk > 0; otherwise, put Sk = 0. The
&&Fk is a statistic similar in structure to the
FGH2 statistic that Cornelius et al. (1996)
used to test the null hypothesis H0 : λk = 0,
but FGH2 replaces &&uk with uk, the latter
defined as the conditional expectation

( )[ ]n k kE $ / |λ σ λ2 2 2 0= , i.e. &&uk is an estimate

of ( )[ ]nE k k
$ | , , . . . , , . . .λ λ λ λ2

1 2 . The value of

&&uk in Sk is appropriate for the alternative
hypothesis H1 : λk > 0, but not for the null
hypothesis. The above-described shrinkage
estimators are appropriate for any of the
balanced LBMs – AMMI, SREG, GREG and
COMM. See Cornelius and Crossa (1999) for
a mathematical justification for the above-
described shrinkage estimators and for
details of a scheme for computing shrinkage
estimates of SHMM.

In practice, we obtain initial values of &&uk

as the number of independent parameters in
the kth bilinear component (i.e. number of
parameters minus number of constraints).
These initial &&uk are used to obtain an initial
set of shrinkage estimates of the λk. Then,
these initial shrinkage estimates are used
as supposed ‘true’ values of the λk in a
simulation (parametric bootstrap) scheme
to obtain more accurate values of the &&uk ,
which, in turn, are used to obtain a new
set of shrinkage estimates of the λk. The

scheme can be iterated as often as desired.
The scheme has been observed to move the
shrinkage estimates into a rather stable
neighbourhood in about five iterations.
For our scheme for computing shrinkage
estimates of SHMM, see Cornelius and
Crossa (1999).

Prediction accuracy of the shrinkage
estimates of linear–bilinear models

It has been suggested that shrinkage esti-
mates of LBMs will provide better estimates
of the realized values of the cell means (µij)
than will the empirical cell means or LS
solutions of parsimonious models with the
number of multiplicative terms chosen by
cross-validation or any test of statistical
significance (Cornelius et al., 1993a, 1996;
Cornelius and Crossa, 1995). Cornelius and
Crossa (1999) analysed five MET data sets
using random data splitting and cross-
validation. They evaluated the predictive
accuracy of the shrinkage estimates of the
LBMs and compared them with: (i) the best
LS fitted truncated LBM; (ii) the empirical
BLUPs of the cell means based on the RE2W
model; and (iii) the empirical cell means.
The root mean square predictive difference
(RMSPD) was computed for judging the best
predictive model, i.e. the one having the
lowest RMSPD. The authors used data adjus-
ted by replicate differences within environ-
ments to reduce the noise in the modelling
and validation data that otherwise occurs as
a consequence of ignoring block differences
when randomly splitting the data.

Results showed that the worst predic-
tors of the genotypic performance were the
empirical cell means (Table 20.3). In all five
experiments, shrinkage estimates of LBMs
were better predictors than the best trun-
cated model fitted by LS and, except in one
experiment, also better than the BLUPs of
the cell means. These results suggest that
shrinkage estimates of LBMs eliminate the
need for testing hypotheses and cross-
validation to select an optimum number
of bilinear terms. Results also indicate that
predictive accuracy differs little among the
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five model forms if shrinkage estimators are
used.

Experimental data set 3 of Cornelius and
Crossa (1999) is the maize MET data, with

nine genotypes evaluated in 20 environ-
ments, used earlier in this chapter to
illustrate SHMM and SREG clustering of
environments. For this MET, clearly
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Model form* Truncated Shrinkage BLUP Empirical cell mean

Experiment 1
AMMI4
COMM5

SREG5

GREG4

SHMM5

637.45
636.40
641.12
638.90
636.71

–

627.65
626.92
628.04
628.17
628.61

–

–
–
–
–

637.40

–
–
–
–

671.10

Experiment 2
AMMI8
COMM8

SREG8

GREG8

SHMM8

1322.60
1316.89
1318.83
1316.28
1315.54

–

1273.67
1272.27
1275.44
1272.21
1275.35

–

–
–
–
–
–

1284.04

–
–
–
–
–

1331.26

Experiment 3
AMMI1
COMM2

SREG1

GREG2

SHMM2

816.41
813.39
816.30
808.03
810.16

–

800.36
799.42
800.48
798.24
799.40

–

–
–
–
–

817.64

–
–
–
–

849.45

Experiment 4
AMMI10

COMM11

SREG6

GREG11

SHMM11

832.57
822.29
823.79
822.53
823.61

–

796.69
795.66
798.33
797.38
799.55

–

–
–
–
–
–

798.86

–
–
–
–
–

831.10

Experiment 5
AMMI0
COMM1

SREG1

GREG1

SHMM1

677.49
675.79
684.56
675.08
676.03

–

668.50
668.14
671.60
668.09
671.48

–

–
–
–
–
–

663.95

–
–
–
–
–

715.84

*The subscripts on the model forms indicate the number of bilinear terms retained in the best truncated
model. This subscript is not related to the shrinkage estimates.
RMSPD, root mean square predicted difference; AMMI, additive main effects and multiplicative
interaction model; GREG, genotypes regression model; SREG, sites regression model; COMM,
completely multiplicative model; SHMM, shifted multiplicative model; BLUP, best linear unbiased
predictor; MET, multi-environment trials.

Table 20.3. RMSPD (kg ha−1) values for the best truncated least-squares fitted model and shrinkage
estimates for linear–bilinear model forms AMMI, GREG, SREG, COMM and SHMM, for the BLUPs of cell
means and for empirical cell means, all obtained by cross-validation in five MET data sets (Cornelius and
Crossa, 1999).



shrinkage estimates are better predictors
than empirical cell means and BLUPs of
cell means (Table 20.3). Crossa et al. (2002)
computed SREG1 clustering of the 20 envi-
ronments in this MET, with the empirical
cell means replaced with SREG shrinkage
estimates as input to the procedure. Two of
the final groups of environments obtained,
namely, {2, 4, 5, 6, 9, 11, 12, 13, 14, 16, 18}
and {7, 15, 17, 19, 20}, were different from
those in Fig. 20.2. Only the environmental
group {1, 3, 10} was the same. Whereas two of
these groups did not agree with the cluster-
ing computed from empirical cell means,
they did agree with groups of environments
delineated by sectors of an SREG2 biplot
computed from deviations of empirical cell
means from site means.

This is a very intriguing empirical result,
suggesting that the methodology deserves
study in more examples. Because of the
separation of pattern from random error that
appears to be achieved by the shrinkage esti-
mators, we believe SREG clustering using
shrinkage estimates of cell means as input
has considerable promise as a routine proce-
dure for the study of interaction patterns in
an MET.

Software

To compute SHMM and SREG clustering
of environments or SHMM clustering of
genotypes, we first use an SAS® program
(SAS/IML) to obtain a dendrogram. Then,
adequacy of fit of SHMM1 or SREG1

(constrained, if necessary) is evaluated
using the Fortran program EIGAOV.
Enquiries concerning the availability of
the software may be sent to P.L. Cornelius
(corneliu@ms.uky.edu).
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Introduction

The recommendation of new plant varieties
for commercial use requires reliable and
accurate predictions of the average yield
of each variety across a range of target
environments and knowledge of important
interactions with the environment. This
information is obtained from a series of
plant variety trials, also known as multi-
environment trials (MET). Each year, many
millions of dollars are spent worldwide on
the acquisition of such data. To maximize
the cost-efficiency of this work, it is crucial
that the data be scrutinized using an appro-
priate, informative statistical analysis. Two
key aspects of the analysis are the assump-
tions associated with the variety effects and
interactions and those associated with the
field-plot errors from individual trials. For
the latter, many approaches assume simple,
often inappropriate, within-trial structures,
such as randomized complete block (RCB),
and a common error variance for all trials.
Data from field trials often exhibit spatial
variation, so called because it is a function
of the location of the plots in the field.
Gilmour et al. (1997) present a method of
analysis in which spatial variation is mod-
elled, resulting in estimates of treatment

effects that have greater accuracy and
precision than more traditional methods,
such as RCB and IB (see, for example,
Gleeson and Cullis, 1987). Cullis et al.
(1998) adopted this approach in their
mixed-model analysis of MET data. They
allowed for a separate spatial covariance
structure and error variance for each trial.
This was a major step forward, resulting in
more accurate estimates of overall variety
means (see, for example, Smith et al., 2001).

Smith et al. (2001) extended the Cullis
et al. (1998) approach with the use of
multiplicative models for the variety–
environment (V × E) effects. The model
allows a separate genetic variance for each
trial and provides a parsimonious and inter-
pretable model for the genetic covariances
between pairs of trials. The genetic model
can be regarded as a random effects analogue
of the additive main effects and multi-
plicative interaction (AMMI) model (Gauch,
1992). The Smith et al. (2001) approach,
therefore, combines the interpretative
strengths of AMMI with the advantages
afforded by the mixed-model framework.
The approach encompasses most current
mixed-model approaches to the analysis of
MET data (including Patterson et al., 1977;
Piepho, 1997; Cullis et al., 1998).

©CAB International 2002. Quantitative Genetics, Genomics and Plant Breeding
(ed. M.S. Kang) 323



This chapter is the first in a two-part
series that explores the spatial multiplica-
tive mixed model of Smith et al. (2001) in
full detail. In the second section, we present
the theory associated with the spatial analy-
sis of a single field trial. In the third section,
we describe the spatial analysis for MET
data, incorporating multiplicative models
for V × E effects. Topics covered include
tests of goodness of fit and model interpreta-
tion. The methods are illustrated in Chapter
22 (Part 2: Applications).

Spatial Analysis of a Field Experiment

Gilmour et al. (1997) partition spatial varia-
tion into two types of smooth spatial trend
(local and global) and extraneous variation.
Local trend reflects, for example, small-
scale soil depth and fertility fluctuations.
Global trend reflects non-stationary trend
across the field. Extraneous variation is
often linked to the management of the trial.
An example is the effect of harvesting in a
serpentine manner up and down the rows
in the field, with plots harvested in the
‘up’ direction being consistently lower/
higher-yielding than plots harvested in the
‘down’ direction. Global trend and extra-
neous variation are accommodated in the
model by including appropriate terms, such
as design factors and polynomial functions
of the spatial coordinates of the field plots.
Local stationary trend is accommodated
using a covariance structure. The decompo-
sition  of  error  variation  provides  a  more
plausible approach than the original spatial
methodology of Gleeson and Cullis (1987)
and Cullis and Gleeson (1991), in which
error variation as a whole was modelled
using a covariance structure.

It is assumed that an individual experi-
ment consists of n plots that are laid out in
the field as a rectangular array of r rows by c
columns (n = rc). The data y(n × 1) are ordered
correspondingly (as rows within columns).
The model for y is given by

y = Xτ + Zu + e (21.1)

where τ(t × 1) and u(b × 1) are the vectors of
fixed and random effects, respectively.
X(n × t) and Z(n × b) are associated design
matrices, the former assumed to be of full
column rank. The vector of residuals is
given by e(n × 1). It is assumed that the joint
distribution of (u, e) is Gaussian, with zero
mean and variance matrix:

( )
( )

G
R

γ
φ0

0






where G(b × b) and R(n × n) are symmetric posi-
tive definite matrices that are functions of
the vectors of variance parameters γ and φ,
respectively. The distribution of the data is
thus Gaussian, with mean Xτ and variance
matrix H = ZGZ′ + R, where Z′ denotes the
transpose of Z.

The vector of errors e is assumed to
follow a (second-order stationary) spatial
process with Var[e] = R = σ2Σ(a) where Σ
is the spatial correlation matrix that is a
function of parameters a and has associated
variance σ2. Possible forms for Σ are described
in the section on covariance models for local
spatial trend.

The model in Equation 21.1 is a mixed
model, so the estimation strategy outlined
in the section on Estimation can be used.
The variance parameters to be estimated are
κ = (γ, φ), where φ = (σ2, α).

Traditional methods of analysis, such as
RCB and IB, are special cases of Equation
21.1. For an RCB analysis, u contains repli-
cate effects and Σ = In, where In is the n × n
identity matrix. The parameter σ2 is simply
the trial error variance, the residual maxi-
mum likelihood (REML) estimate of which is
identical to the error mean square from an
ordinary analysis of variance (ANOVA). For
an IB analysis with recovery of interblock
information, u contains effects for replicates
and blocks within replicates and Σ = In. The
parameter σ2 is the within-block error vari-
ance. Treatment effects will be included in
either τ or u, depending on the aims of the
experiment.

The key to the Gilmour et al. (1997)
approach to spatial analysis is the identifica-
tion of an appropriate variance structure for
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the plot errors. There is no longer a dichot-
omy between spatial analysis and traditional
methods, such as RCB and IB. The latter
provide legitimate error variance models
that would be adopted in the spatial
approach if found to be consistent with
the data. This is rarely the case, however.

Covariance models for local spatial trend

Local trend reflects the fact that, in the
absence of design effects, data from plots
that are close together are more similar than
those that are further apart. Thus, the ele-
ments of e are correlated, the correlations
being a function of the spatial distance
between plots. Let Σ = {ρij}, where ρij =
Cor[ei, ej] is the spatial correlation between
plots i and j. Since field experiments
are arranged as rectangular arrays, a two-
dimensional coordinate system is required
to define the location of each plot. Let si =
(sir, sic) denote the spatial location of ith
plot in the field, where sir and sic are the row
and column coordinates, respectively. The
spatial correlation between ei = ei(si) and
ej = ej(sj) can then be written as:

ρij = V(si, sj; α)

where the correlation function V depends
on a vector of unknown parameters α. Since
the process for e is second-order stationary,
the correlation between two plots depends
only on the distance between them. Thus:

V(si, sj; a) = V(lij; a)

where lij = (lijr, lijc) = si − sj. It is further
assumed that the two-dimensional process
is separable, so that the correlation function
is given by the product of the correlation
function for each dimension. The separa-
bility assumption is computationally con-
venient and appears to be reasonable for the
two-dimensional spatial trend process asso-
ciated with field trials (see, for example,
Martin, 1990; Cullis and Gleeson, 1991).
Thus:

V(lij; α) = Vr(lijr; αr)Vc(lijc; ac)

where Vr and Vc are the correlation func-
tions for rows and columns, respectively.
Correspondingly, the variance matrix for e
can be written as:

Var[e] = σ2Σ(α) = σ2Σc(αc) ⊗ Σr(αr)

where Σr and Σc are the r × r and c × c
correlation matrices for rows and columns,
respectively.

Many forms for V are possible. Zimmer-
man and Harville (1991) give examples used
in geostatistical applications, including the
exponential model, which, for a single
dimension, is given by V(lij; α) = exp
(−α|lij|p) for some integer p. Extending to a
separable two-dimensional process gives:

V(lij; α) = exp(−αr|lijr|p − αc|lijc|p) (21.2)

The model with p = 1 is particularly impor-
tant for field experiments.

In field experiments, plots are often of
equal size and are laid out in a contiguous
array, so that the distance between plots can
be measured simply in terms of row and
column numbers. Let lijr

* be the difference in
row numbers between plots i and j, so that lijr

*

has possible values 0, 1, . . . (r − 1). Define lijc
*

similarly. If dr and dc are the actual distances
(in metres, say) between the centroids of
plots in row and column directions, respec-
tively, then l d lijr r ijr= * , so that exp(−αr|lijr|) =
ρr

lijr| |* , where ρr = exp(−αrdr). The function in
Equation 21.2 with p = 1 is then given by:

V(lij; α) = ρ ρr
l

c
lijr ijc| | | |* *

(21.3)

where ρr and ρc are, by definition, positive.
If this restriction is lifted, Equation 21.3
is the correlation function for a separable
autoregressive process of order 1 (hereafter
denoted AR1 × AR1). Cullis and Gleeson
(1991) proposed this as a plausible
correlation structure for spatial trend. The
parameters α = (ρr, ρc) are known as the auto-
regressive coefficients. Many other forms for
Σ are possible (see, for example, Gleeson
and Cullis, 1987). Experience has shown,
however, that the AR1 × AR1 model (or a
variant with an identity matrix for one of the
dimensions) usually provides an adequate
variance structure for local spatial trend.
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The variogram

A tool that is widely used in repeated mea-
sures and geostatistical analyses to visual-
ize temporal or spatial dependence is the
variogram. For a general two-dimensional
spatially correlated process, E(⋅), the value
of the variogram for two locations, si and sj,
is defined as:

{ }ω( , ) ( ) ( )s s s si j i jE E= −





1
2

2
E

If E(⋅) has zero mean, this can be interpreted
as half the variance of the difference
between the two locations.

For the second-order stationary spatial
trend process e in Equation 21.1, the theoret-
ical variogram is given by:

ω(si, sj) = ω(lij) = σ2{1 − V(lij; α)}

where V is the correlation function defined
in the section on Covariance models for
spatial trend.

The variogram for an independent
process is therefore constant, irrespective of
the distance lij between plots. As previously
noted, the AR1 × AR1 process of Equation

21.3 is particularly important for field
experiments. The associated theoretical
variogram is given by:

{ }ω( ) σ ρ ρlij r
l

c
lijr ijc= −2 1 | | | |* *

(21.4)

This increases monotonically in both the
row and column directions as the separa-
tion between plots increases (and thus cor-
relation between plots decreases). It reaches
a plateau that is given by the variance σ2.
The greater the autoregressive correlation
coefficients, the slower the rise to the
plateau (see Fig. 21.1, for example).

The sample variogram

Given a set of data y that follows the model
in Equation 21.1, the sample variogram is
defined by:

{ }v e eij i i j j= −
1
2

2
( ) ( )s s

Where e = {ei(si)} = y − Xτ − Zu. Clearly, this
is unbiased for w(si, sj).

In practice, the vector of residuals
is unknown and so is replaced by the
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Fig. 21.1. Three-dimensional plot of variogram for an AR1 × AR1 process with σ2 = 1, ρr = 0.8 and
ρc = 0.2. The x and y ordinates are displacements in the row and column directions, respectively, measured
as differences in row/column numbers.



estimate ~e = {~ei(si)} = y − X$τ − Z~u. An esti-
mate of the sample variogram is then
obtained as:

{ }~ ~ ( ) ~ ( )v e eij i i j j= −
1
2

2
s s

With the assumption of equal plot sizes and
a contiguous layout, there will be many val-
ues of ~v ij with the same absolute displace-
ment lij

* . The mean, denoted v ij , is calcu-
lated and the sample variogram is defined
by the triple (lijr

* , lijc
* , v ij). This can be viewed

graphically as a three-dimensional plot.
Since at large displacements v ij is based on
only a few pairs of points, the graph should
be truncated to exclude these ordinates.

As discussed in Gilmour et al. (1997),
the use of estimated residuals introduces
bias into the sample variogram. We propose
the use of the sample variogram purely
as an informal diagnostic tool so that this
bias can be ignored. It has no adverse effect
on the visual interpretation of the sample
variogram.

Error model identification

The determination of an appropriate
variance structure for the separable spatial
trend process and the detection of extrane-
ous effects is made possible through the use
of graphical diagnostics. Two key graphs
are of estimated residuals against row
(column) number (hereafter referred to
generically as ‘residual plots’) and the
three-dimensional graph of the sample
variogram. Future work is focused on the
construction of score tests to determine
the adequacy of a particular spatial model.
This will remove possible ambiguities in
the interpretation of the visual diagnostics.

Global trend

Non-stationary global trend in the row
direction, say, will be displayed in the
residual plots as a smooth trend (linear
or non-linear) over row number for each
column. A sample variogram that fails to
reach a plateau in the row/column direction

is evidence of global trend. Historically,
non-stationarity of this type was corrected
by differencing the data (see, for example,
Gleeson and Cullis, 1987), but this compli-
cates the analysis. Gilmour et al. (1997)
recommend an alternative approach that
involves the fitting of polynomial functions
or cubic smoothing splines (Verbyla et al.,
1999) to the row and/or column coordinates
of the plots. Thus, the non-stationary global
trend is explicitly modelled.

Extraneous variation

Management of field trials involves proce-
dures that are aligned with the rows and
columns. Examples are the sowing and
harvesting of plots. Certain procedures may
result in row and column effects (systematic
and/or random) in the data. Gilmour et al.
(1997) label this extraneous variation to
distinguish it from smooth trend.

Extraneous variation may be evident
from an examination of the residual plots. It
may be more clearly seen, however, using
the sample variogram. For example, a vario-
gram with a sawtooth appearance indicates
the presence of cyclic row/column effects.
Since this is a systematic effect, it can be
accommodated in the model by fitting a
fixed factor with number of levels corre-
sponding to the length of the cycle.

There may also be non-systematic varia-
tion associated with rows and columns. This
is accommodated by fitting random row/
column effects in the model. The variogram
can be used to diagnose the existence of
random row and column effects. If there are
random row effects, the variogram ordinates
will be lower at zero row displacement
compared with other row displacements,
and similarly for random column effects.

Outliers

As with any data analysis, it is vital that
erroneous data points be excluded. In a
spatial analysis, potential outliers will
be revealed on the residual plots. Work
is in progress to construct formal tests
of significance for outliers in a spatial
analysis (Gogel, 1997). Consultation with
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the researcher will determine whether an
outlier is erroneous and should therefore be
omitted.

The Spatial Mixed Model for MET Data

Consistent with the notation in the section
on Spatial Analysis of a Field Experiment, it
is assumed that the jth trial (synonymous
with environment), j = 1 . . . p, consists of Nj

plots laid out in a rectangular array with rj

rows and cj columns (Nj = rj × cj). The data
vector y j

N j( )× 1 is ordered correspondingly
as rows within columns. The model for
the combined vector of data across trials
y(n × 1) = {yj}, n = N jj

p

=
∑

1
, is given by:

y = Xτ + Zu + e

where τ(t × 1) and u(b × 1) are vectors of fixed
and random effects, respectively. X(n × t) and
Z(n × b) are the associated design matrices,
the former assumed to be of full column
rank. The vector of residuals is given by e.
It is assumed that the joint distribution of
(u′, e′)′ is Gaussian, with zero mean and
variance matrix:

( )
( )

G
R

γ
φ0

0






where γ and φ are vectors of variance
parameters. The distribution of the data y is
thus Gaussian, with mean Xτ and variance
matrix H = ZGZ′ + R.

The errors e consist of subvectors {ej},
wheree j

N j( )× 1 is the vector of plot error effects
for the jth trial, which is a (second-order
stationary) spatially dependent process. The
errors from different trials are assumed to be
independent. The error variance matrix for
trial j is given by R j j j j=σ α2Σ ( ) where Σj is a
spatial correlation matrix that is a function
of parameters αj and has associated variance
σ j

2. Models for Σj are described in the section
on Covariance models for local spatial trend.

The random effects u consist of sub-
vectors {ui}, where ui

bi( )× 1 is the vector of
effects for the ith random term, i = 1 . . . q.
The matrix Z is partitioned conformably as
[Z1 . . . Zq]. The subvectors in u are assumed
to be mutually independent. The variance

matrix Gi for the ith random term has many
possible forms, including the standard
variance component structure, namely
G Ii i bi=σ2 . In the most general case, Gi could
be completely unstructured, comprising
bi(bi + 1)/2 parameters.

For the variety effects, we adopt the
view that the yields from different environ-
ments constitute different traits for each
variety (Falconer, 1952). It is therefore
natural to consider genetic variances for
each environment (reflecting the magnitude
of variation between varieties in individual
environments) and genetic correlations
between pairs of environments (reflecting
the agreement in variety rankings). This
framework is synonymous with a statistical
model in which the variety effects in each
environment are regarded as random. Let ug

be the mp × 1 vector of (genetic) effects for m
varieties in each of p environments (ordered
as varieties within environments). This
represents a two-dimensional (variety by
environment) array of effects, namely
U g

m p( )× , where ug = vec[Ug]. It is assumed
that the associated variance structure is
separable with:

Var[ug] = Ge ⊗ Im (21.5)

where Ge = {σ g jj ′
} is the p × p symmetic

genetic variance matrix. The diagonal
elements are the genetic variances for indi-
vidual environments and the off-diagonal
elements are the genetic covariances
between pairs of environments.

Finally, the spatial mixed model for
MET data can be written as:

y = Xt + Zu + e
= Xt + Z0u0 + Zgug + e (21.6)

where the fixed effects τ include environ-
ment main effects and trial specific effects
for extraneous field variation (as described
in the section on Extraneous variation), ug

are the variety effects in each environment
with associated design matrix Zg

(n × mp)

and variance matrix as in Equation 21.5 and
u0 comprise any additional random effects
(including trial specific effects for extra-
neous variation). The latter have design
matrix Z0 and variance matrix G0. If there
are trials in which only a subset of the m
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varieties are grown, then Zg will contain
zero columns. Thus, unbalanced data
are easily accommodated. Note that, in
Equation 21.6, the variety effects in each
environment are specified as a single
random term, that is, a single subvector of
u. The partitioning into variety main effects
and V × E interactions is considered as a
submodel.

Factor-analytic models for variety effects

There are many possible forms for the
genetic variance matrix. The standard
mixed model for MET data (see Patterson
et al., 1977) involves the fitting of variety
main effects uv

m( )×1 (assumed here to be
random) and (random) V × E interactions.
Thus, the variety effects in different envi-
ronments are partitioned as:

ug = (1p ⊗ Im)uv + uve (21.7)

The main effects and interactions are
assumed to be sets of independent effects
with zero means and constant variances,
given by σv

2 and σve
2 , respectively. The

genetic variance matrix is then given by
G J Ie v p ve p= +σ σ2 2 , where Jp is a p × p matrix
of ones, so that genetic variances,
covariances and correlations are given by:

σ σ σg v vejj
= +2 2 , ∀j

σ σg vjj ′
= 2 , ∀j ≠ j ′

( )ρ σ σ σg v v vejj ′
= +2 2 2/ , ∀j ≠ j ′

This so-called compound symmetry
structure or repeatability model, therefore,
implies that all environments have the
same genetic variance and all pairs have
the same genetic covariance (thence all
pairs have the same genetic correlation).
This rarely provides an adequate fit to the
data. At the other extreme, we have a com-
pletely general or unstructured form for Ge

that contains p(p + 1)/2 parameters. Estima-
tion of such a structure may be inefficient or
unstable for even moderately large values of
p, so a more parsimonious representation is
desirable. This can be achieved using multi-
plicative models for the variety effects in

each environment. Here we consider the
multiplicative model associated with the
multivariate technique of factor analysis
(see, for example, Mardia et al., 1988).

Factor analysis is used to model the
covariance structure among a set of p
observed variates x1 . . . xp. The aim is to
account for the covariances of the x variates
in terms of a much smaller number of hypo-
thetical factors. As Lawley and Maxwell
(1971) state:

in correlation terms . . . the first question
that arises is whether any correlation exists
. . . If there is correlation, the next question
is whether there is a random variate f1

such that all partial correlation coefficients
between the x variates after eliminating the
effect of f1 are zero. If not, then two random
variates f1 and f2 are postulated and the
partial correlation coefficients after elimi-
nating f1 and f2 are examined. The process
continues until all partial correlations
between the x variates are zero.

In the context of MET data, the factor-
analysis approach can be used to provide a
class of structures for the genetic variance
matrix, Ge. The model is postulated in terms
of the (unobserved) variety effects in differ-
ent environments:

u fglj jr lr lj
r

k

= +
=

∑ λ δ
1

(21.8)

where ug lj
is the effect for variety l in envi-

ronment j, flr is the score for variety l in
factor r and λjr is the associated loading for
environment j. The error, δlj, represents lack
of fit of the model. This model is repre-
sented in vector notation as:

ug = (λ1 ⊗ Im) f1 + . . . + (λk ⊗ Im) fk + d

= (Λ ⊗ Im) f + d (21.9)

where λr
(p × 1) = {λjr}, fr

(m × 1) = {flr}, δ(mp × 1) =
{δlj}, Λ(p × k) = [λ1 . . . λk] and f (mk × 1) = ( ′f1 , ′f2

. . . ′fk)′. The joint distribution of f and d is
given by:
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where Ψ = diag (ψ1 . . . ψp). The variance
matrix for the variety effects in each envi-
ronment is then given by:
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Thus, the model for the variety effects
in Equation 21.9 leads to a model for Ge in
which:
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Note that Equation 21.9 has the form of a
(random) regression on k environmental
covariates, λ1 . . . λk, in which all regressions
pass through the origin. It may be more
appropriate to allow a separate (non-zero)
intercept for each variety. This is equivalent
to the model with variety main effects, uv, and
a k factor-analytic model for the V × E inter-
actions. Using Equation 21.7 we then have:

ug = (1p ⊗ Im)uv + (Λ ⊗ Im)f + d (21.11)

where uv has mean zero and variance σv m
2I ,

say. The model can be written as:

ug = (σv1p ⊗ Im)f0 + (L ⊗ Im)f + d

= (Lv ⊗ Im)fv + d (21.12)

where Λv
p k× +( )1 = [sv1p L], f0 = uv/σv and ′fv =

( ′f0 , ′f ). Thus, the model with variety main
effects and a k factor-analytic model for
the V × E interactions is a special case of a
(k + 1) factor-analytic model for the variety
effects in each environment, in which the
first set of loadings are constrained to be
equal.

The feature that distinguishes Equations
21.9 and 21.11 from standard random regres-
sion problems is that both the covariates L
and the regression coefficients f are unknown
and, as such, must be estimated from the
data. The model is, therefore, a multi-
plicative model of environment and variety
coefficients (known as loadings and scores,
respectively). Herein lies the analogy with
approaches such as AMMI (Gauch, 1992).
A key difference is that the multiplicative
model in Equation 21.11 accommodates ran-
dom effects, whereas AMMI is a fixed-effects

model. (See the section on Connection with
AMMI models for a detailed comparison.)
Gogel et al. (1995) and Piepho (1997) pro-
posed multiplicative mixed models for MET
data, but assumed random-environment
rather than random-variety coefficients.
This leads to a factor-analytic model for the
right-hand side of the separable structure in
Equation 21.5 rather than the left-hand side.
It is therefore assumed that the variance
structure is associated with varieties rather
than environments. In this chapter, the con-
verse is used, as it is consistent with the logic
of environments as traits. Our experience
has shown a greater need to allow for hetero-
geneity of genetic variance and covariance
between environments compared with vari-
eties. This can, of course, be examined for-
mally for each data set or chosen to suit the
application.

Estimation

Full details regarding estimation of the
mixed model in Equation 21.6 are given in
Smith et al. (2001). Only a brief outline is
presented here.

The estimation procedure leads to best
linear unbiased estimates (BLUEs) of the
fixed effects:

( )$t= ′ ′− − −X H X X H y1 1 1

and best linear unbiased predictors (BLUPs)
of the random effects:

~u G Z Py0 0 0= ′

( )~u G I Z Pyg e m g= ⊗ ′ (21.13)

where:

[ ] ( )H y Z G Z Z G I Z R= = ′ + ⊗ ′ +Var 0 0 0 g e m g

( )P H X X H X X H= − ′ ′− − − − −H 1 1 1 1 1

For the factor-analytic model, BLUPs of
the variety scores f and residuals d can be
obtained in terms of ~u g as:

[ ] ( )[ ]~
f f Z I= ⊗Var g mL ′ Py

( )[ ]= ′ ′+ ⊗
−

L LL Y
1

I um g
~

and

( )[ ]~ ~d Y LL Y= ′+ ⊗
−1

I um g
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To calculate the estimates of fixed and
random effects, we require estimates of the
parameters in Go, Ge and R. In terms of
the factor-analytic model, the variance
parameters associated with Ge are Λ and Ψ.
We estimate variance parameters using the
method of REML (Patterson and Thompson,
1971). We use a scoring algorithm known as
the average-information algorithm (Gilmour
et al., 1995), which is a modified Fisher
scoring algorithm, in which the expected
information matrix is replaced by an approx-
imate average of the observed and expected
information matrices.

The approach to estimation of the
factor-analytic model in Smith et al. (2001)
is computationally intensive. An alternative
algorithm that uses sparse matrix methods
is given in Thompson et al. (2001). This
has been shown to reduce computing time
substantially. It also accommodates cases
where some (or all) specific variances need
to be constrained equal to zero, thereby lead-
ing to a variance structure that has less than
full rank. Current research focuses on alter-
natives to the average-information algorithm,
in particular the expectation-maximization
(Dempster et al., 1977) and parameter-
expanded expectation-maximization (EM)
algorithms (Liu et al., 1998).

Constraints on  loadings

When k > 1, the number of free variance
parameters in a k factor-analytic structure is
not pk + p, as suggested by Equation 21.10,
but only pk + p − k(k − 1)/2. This arises
from the fact that the distribution of
ur = (Λ ⊗ Im) f is singular. It is necessary to
impose k(k − 1)/2 independent constraints
on the elements of Λ to ensure uniqueness.
The non-uniqueness of the loadings has
implications both for the estimation and
for the interpretation of the factor-analytic
model.

For estimation purposes, Mardia et al.
(1988) choose to constrain Λ′Ψ−1Λ to be diag-
onal. Jennrich and Schluchter (1986) suggest
an alternative approach, stipulating that
‘k(k − 1)/2 factor loadings in Λ . . . should

be . . . set equal to zero to fix the rotation’. A
key point that is implicit in this statement
but may easily be overlooked is that it is
both the number and the position of the
zeros that are important. One pattern that
ensures uniqueness (and therefore fixes the
rotation) is when all k(k − 1)/2 elements in
the upper triangle ofΛ are zero, that is, λjr = 0
for j < r = 2 . . . k. (The proof of uniqueness
follows from theorem 14.5.5 in Harville
(1997).) In terms of an algorithm for REML
estimation of a k factor-analytic variance
structure, this approach is more convenient
than that of Mardia et al. (1988), since it
constitutes a set of linear constraints. The
solution of the score equations subject to
these constraints can, therefore, be achieved
using the approach described in Smith
(1999).

Goodness of fit

The aim of the factor-analytic model for
V × E effects is to account for the genetic
covariances among p environments in terms
of a much smaller number k of (unknown)
factors f1 . . . fk. Since it is fitted within a
mixed-model framework, the adequacy of
the factor-analytic model can be formally
tested. The model with k factors, denoted
FA(k), is nested within the model with k + 1
factors. An intermediate model is that with
variety main effects and k factors for the
V × E interactions. This will be denoted
V + FA(k). Residual maximum likelihood
ratio tests (REMLRT) can be used to
compare these models.

The standard test of goodness of fit of
a factor-analytic model involves the com-
parison with an unstructured form for the
variance matrix (see, for example, Mardia
et al., 1988). This can be carried out when
the number of environments is small.

Connection with AMMI models

The AMMI model has become a popular
method for analysing MET data. To use
AMMI, the data must comprise a complete
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two-way factorial structure (variety ×
environment) and may or may not be
replicated. The model is a fixed-effects
model with (additive) main effects for
varieties and environments and multiplica-
tive terms for the interaction. The latter
are obtained using a singular value decom-
position (SVD) of the V × E interactions. Let
Uve denote the m × p matrix of V × E inter-
actions. In AMMI, Uve is decomposed as
Uve = ALB*′, where A and B* are m × t and
p × t matrices, such that A′A = It = B*′B*,
L = diag(l1 . . . lt) and t is the rank of Uve.
Defining B = B*L, the decomposition can be
written as:

U ABve = ′

= ′
=

∑a br r
r

t

1

(21.14)

The columns of A (ar
m( )×1 ) are called the

variety scores and the columns of B (br
p( )×1 )

are the environment loadings.
As in factor analysis, the aim in the

AMMI approach is to account for structure
in the genetic effects using the minimum
number, k, of multiplicative terms. Isolation
of the first k terms in Equation 21.14 gives:

U a b a bve r r r r
r k

t

r

k

= ′ + ′
= +=

∑∑
11

= ′ + ′A B A B1 1 2 2

where A1 and B1 are m × k and p × k
matrices, respectively. Thus, in the AMMI
model, the V × E interactions are modelled
as:

uve = (B1 ⊗ Im)a + eg (21.15)

where a(mk × 1) = vec[A1] = ( ′a1 . . . ′ak)′ and
e g

mp( )×1 are the residual V × E interactions
that remain if not all t components of the
SVD are used. The latter are assumed to be
independent with constant variance.

There is a clear connection between
Equation 21.15 and the k factor-analytic
model for the V × E interactions, namely:

uve = (Λ ⊗ Im)f + d

There is a correspondence between the
environment loadings for the two models
(B1 and Λ) and the variety scores (a and
f). Thus, the k factor-analytic model of

Equation 21.11 is a random-effects analogue
of the AMMI model.

Model interpretation

Prediction of overall variety means

It is often of interest to obtain an overall
mean (across environments) for each
variety. One possibility is to obtain the
prediction at the mean values of the load-
ings. By definition of the loadings, these are
predictions of variety means for an environ-
ment that is ‘average’, in the sense of having
average genetic covariance with all other
environments. For a simple model in which
there are no effects (fixed or random) for
extraneous variation and in which τ is the
vector of environment means, the predic-
tion for variety l is given by:

$ $ ~
.τ λ+

=

∑ r lr
r

k

f
1

(21.16)

where $τ is the mean across environments
of the estimated environment means and $

.λ r

is the mean across environments of the
estimated loadings for the rth factor.

An alternative is to form the two-way
table of predicted variety means for each
environment and then simply average
across environments. For variety l, this is
given by:

( )1

1 1p
u fj glj

j

p

r lr l
r

k

$ ~ $ $ ~ ~
. .τ τ λ δ+ = + +

= =

∑ ∑ (21.17)

where
~

.δl is the mean across environments
of the BLUPs of the residual effects for
variety l.

Note that the difference between the
two types of means is the inclusion of
unexplained V × E effects (lack of fit from
the factor-analytic model) in the second
approach.

The calculation of overall variety means
is the same, irrespective of the inclusion of
variety main effects in the model. If they are
included then $λ1 in Equations 21.16 and
21.17 corresponds to the loadings for the
main effects and so, from Equation 21.12, is
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given by $σv . The issue of interpretation of
the variety main effects in Equation 21.12 is
important. These are not main effects in the
usual sense, namely, a measure of overall
variety performance, but are merely inter-
cepts in the regression. They therefore
reflect variety performance in an environ-
ment that has zero values for the loadings.
As in ordinary regression, a centring of
the covariates (loadings) would result in
the intercepts reflecting predictions at the
average values of the covariates. In our
application, this would provide variety
main effects that are identical to the means
in Equation 21.16.

Overall measures of performance must
be used with caution. If the genetic correla-
tions between environments are small, that
is, if there are large changes in variety rank-
ings from one environment to the next, then
it is unwise to use an overall measure of per-
formance to make broad selection decisions
(see, for example, Cooper and DeLacy, 1994).

Interpretation of environment loadings

The non-uniqueness of L when k > 1
introduces ambiguity into the interpretation
of both the environment loadings and the
variety scores. The constrained form of L
described in the section on Constraints on
loadings is purely for computational ease
and has no biological basis. It is therefore
necessary to rotate the solution to obtain
a meaningful interpretation of the loadings
and scores. Lawley and Maxwell (1971)
describe a number of rotations designed to
aid with interpretation in the analysis of
social-science data. We choose a rotation
analogous to AMMI, namely, a principal-
component representation of the loadings.
If no variety main effects are included
in the model, this means that the first fac-
tor accounts for the maximum amount of
genetic covariance between environments,
the second factor accounts for the next
largest amount and is orthogonal to the
first, and so on. If variety main effects
are included, the rotation is applied to the
loadings associated with the V × E inter-
actions. The principal-component rotation
then means that the first factor accounts for

the maximum amount of V × E interaction
in the data, and so on.

Consider the SVD of L, namely:

L = ALB′

where L is a diagonal matrix with elements
given by the square roots of the eigenvalues
of LL′ (arranged in decreasing order) and
A and B are orthogonal matrices whose
columns are the eigenvectors of LL′ and
L′L, respectively. The required rotation is
then L* = LB.

Note that predictions of overall per-
formance are unaffected by the rotation,
provided that both the loadings and the
scores have been rotated. Thus, if the rotated
loadings L* are used in Equation 21.16 or
21.17, the scores must correspond to this
solution, namely:

( )[ ]~ ~f I u* * * *= m gL L L′ ′+ ⊗
−Ψ 1

Graphical representation

Graphs of loadings (columns of L*) from
factor-analytic models without variety main
effects are particularly useful for clustering
environments in terms of genetic correla-
tions. Environment loadings from one multi-
plicative term are plotted against another
and are displayed as vectors (lines from the
origin). Being two-dimensional, the plot is
most useful when only two or three multipli-
cative terms are needed in the model. If we
consider the plot for the first two multiplica-
tive terms (factors) from a k factor-analytic
model without variety main effects, then:

1. The squared length of the vector for
an environment is the genetic variance
explained by the two factors.
2. The cosine of the angle between the
vectors for two environments is the genetic
correlation arising from the two factors.

Note that if the k = 2 factor model provides
a reasonable fit (so that specific variances
are small), then 1 approximates the genetic
variance for the environment and 2 the
genetic correlation between the pair of
environments.

The multiplicative part of the k factor-
analytic model (either with or without
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variety main effects) can also be displayed
using biplots (see Gabriel, 1971). The ‘bi’
in the name refers to the fact that both
environment loadings and variety scores are
displayed on the same graph. This facilitates
an examination of relationships among
varieties, among environments and between
varieties and environments. Detailed discus-
sions of biplots and their interpretation can
be found in Kempton (1984) and Meulman
(1998). The data sets we routinely analyse
often have so many environments and/or
varieties that a joint display is uninforma-
tive. We therefore often choose to graph
loadings and scores separately.

Discussion

The spatial multiplicative mixed-model
approach of Smith et al. (2001) for the anal-
ysis of V × E data facilitates the modelling
of important sources of variation associated
with both variety and error effects. We
have shown that the multiplicative mixed
model they use to explain V × E variation
is a random-effects analogue of the AMMI
model (Gauch, 1992). Since a mixed model
is used, the advantages over the AMMI
model are numerous. They include:

• Within-trial spatial variation and
between-trial error variance hetero-
geneity can be accommodated.

• Unbalanced data are easily handled.
• Variety effects and V × E interactions

can be regarded as random (leading to
better predictions).

• Goodness of fit of the model (that
is, number of multiplicative terms
needed) can be formally tested.

In the second chapter in this series (Chapter
22: Part 2: Applications), the importance of
some of these points will be demonstrated.
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Introduction

The first chapter in this series (Chapter 21:
Part 1: Theory) contained the methodology
for a spatial multiplicative mixed-model
analysis for variety–environment (V × E)
data. In the analysis, random V × E effects
are modelled using the multiplicative model
associated with factor analysis (Mardia
et al., 1988). This is done simultaneously
with the modelling of spatial field trend for
individual trials (Gilmour et al., 1997). The
current chapter illustrates the methodology
using two examples. It is assumed that this
chapter will be read in conjunction with
Chapter 21.

The first example relates to a series of 16
plant-breeding trials from a single season in
which the aim is to make varietal selections,
either for retention for further yield testing
or for commercial release. In this example,
we illustrate in detail the model-fitting
process. Predictions of overall variety means
(across trials) are calculated for the purpose
of selection. The impact of accommodating

spatial variation and error variance hetero-
geneity is demonstrated.

The second example relates to a series of
61 trials spanning several years and a range
of geographical sites in which the varieties
have been chosen as ‘probes’ for the sites.
The aim is to identify sites that may be
suitable for use as key testing sites in the
early stages of the breeding programme. This
example illustrates how the methodology
can be applied to very large, complex data
sets. The data set comprises 11,597 yield
records and the total number of variance
parameters estimated in the highest-order
model is 485. An approximate solution to
the problem of site selection is presented.

We present the results of a small
simulation study to show the impact on
prediction of ignoring error variance hetero-
geneity between trials and spatial variation
within trials. We also briefly discuss the
accommodation of spatial field trend in
relation to the detection of quantitative trait
loci (QTL) and marker-assisted selection
(MAS).

©CAB International 2002. Quantitative Genetics, Genomics and Plant Breeding
(ed. M.S. Kang) 337



Software

All analyses in this chapter were conducted
using the software program ASREML (Gilmour
et al., 1999), which is a FORTRAN program
for mixed-model estimation. A wide range
of models can be fitted. ASREML uses sparse
matrix methods and the average infor-
mation algorithm (Gilmour et al., 1995)
for residual maximum likelihood (REML)
(Patterson and Thompson, 1971) estimation
of variance parameters. As a result, large
and complex data sets can be efficiently
analysed. Details on the availability of the
ASREML program can be found on the web
site ftp://ftp.res.bbsrc.ac.uk/pub/aar/

Example 1: NSW Lupins

Here we consider a series of trials from
the New South Wales (NSW) Department
of Agriculture lupin-breeding programme.
In this programme, there are a number
of stages of variety testing for yield, com-
mencing with stage 1 (S1), in which a large
number (between 100 and 150) of lines
(cross-breds and standard commercial
varieties) are grown in an unreplicated
(grid) trial at a single location. If there is
sufficient seed, two replicates will be sown.
The most promising lines are selected to be
grown in stage 2 trials in the following year.
The process continues to the final stage (S4)
of testing, in which a small number of élite
lines (approximately 30) are grown in a
diverse range of environments. Decisions
are then made regarding the commercial
release of new lines. Selection decisions
are based on a number of traits, including
disease resistance, quality parameters and
yield. In this chapter, we focus on the analy-
sis of yield data.

Description of data

The data set under study comprises all S2,
S3 and S4 trials grown in the 2000 season
for the narrow-leaf lupin species Lupinus
angustifolius. A total of 12 trial locations

were used, with the locations for the S2
trials also being sown with an S3 trial. (See
Table 22.1, in which the first two characters
of the trial acronym specify the stage and
the last four characters specify the location.)
All locations are in NSW, apart from KATA,
which is in Victoria. All trials were
designed as randomized complete block
(RCB) designs with neighbour balance
(Coombes, 1999). Each had three replicates
and was laid out as a contiguous rectangular
array of plots, with numbers of rows and
columns as given in Table 22.1. Replicates
generally occupied one or several columns
of the trial. A composite data set is used in
preference to a separate analysis for each
series, since there is commonality between
series in terms of the varieties grown. Each
S3 trial contains a complete set of S4 lines
and all trials contain the set of nine stan-
dard commercial varieties. The combined
analysis therefore maximizes the informa-
tion used for selection decisions. The full
data set comprised 2022 records on 108
varieties tested in 16 trials, with 674
variety–trial combinations observed out of
the possible 1728 (39%).
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Trial Rows Columns Varieties

Mean
yield

(t ha−1)
Missing
values

S2ARDL
S2BURU
S2COWR
S2WARI
S3ARDL
S3BURU
S3COWR
S3HARD
S3WARI
S4CORO
S4GANM
S4KATA
S4KILR
S4SUNT
S4URAN
S4THUD

30
30
30
30
22
22
22
44
22
31
31
28
31
31
31
31

6
6
6
6
6
6
6
3
6
3
3
3
3
3
3
3

60
60
60
60
44
44
44
44
44
31
31
28
31
31
31
31

0.98
3.04
3.40
3.27
0.99
3.11
3.69
2.80
3.29
1.28
2.45
3.00
3.30
2.38
2.20
3.49

1
0
0
0
0
0
2
5
0
0
0
0
0
0
0
0

Table 22.1. Summary statistics for lupin trials.



Modelling spatial variation

The first step in the analysis is to determine
appropriate spatial models for each trial.
For this purpose, the variety effects in dif-
ferent trials are regarded as independent.
In the context of the model in Chapter 21,
Equation 21.6, this is achieved using a
genetic variance matrix of the form Ge =
diag (σ g jj

), j = 1 . . . 16, which is analogous
to conducting 16 separate analyses. The
use of a diagonal model for Ge in the first
instance, rather than the more complex
factor-analytic model, greatly reduces the
computing load. The spatial models chosen
can be verified when more realistic and
complex forms for Ge are used.

The spatial models for each trial are
determined using the approach in Chapter
21, the section on Spatial Analysis of a Field
Experiment. The first choice is a separable
autoregressive process of order 1 (AR1 ×
AR1) for local trend for each trial. In terms
of the model in Chapter 21, Equation 21.6,
there are 48 variance parameters in R, 26
fixed effects in X (to account for missing
values, an overall mean, trial effects and
measured covariates for two trials) and the
term u0 is omitted. After fitting this model,
diagnostics – in particular, the sample
variogram – provided evidence of global
trend and extraneous variation (both system-
atic and random) associated with rows and

columns in some of the trials. For example,
the variogram for the trial S2COWR shows
evidence of non-stationarity in the column
direction (Fig. 22.1a), with the variogram
failing to reach a plateau. This was accom-
modated in the model by adding a fixed
effect for the linear regression on column
number for this trial. There is also evidence
of random row effects, with lower variogram
ordinates at zero row displacement com-
pared with other row displacements. This
was accommodated by adding random
effects for the row factor for this trial.

After the examination of residual plots
and sample variograms for all trials, the final
model included six variance parameters in
G0 and an extra nine fixed effects in X to
account for global and extraneous variation.
Local trend was modelled using the AR1 ×
AR1 process for 12 of the trials, whereas
the remaining four trials required a one-
dimensional model for rows only (see Table
22.2).  The  sample variograms from  these
models showed no further evidence of
global or extraneous variation and were
much closer to the theoretical autoregressive
forms (see Fig. 22.1b, for example).

For comparative purposes, an RCB
analysis was conducted for each trial. The
gain of spatial over RCB analysis is likely
to be greatest for large trials with many
varieties and few replicates. The trials
here are relatively small. Despite this, the
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Fig. 22.1. Sample variograms for (a) initial model: AR1 × AR1; and (b) final model: AR1 × AR1 + lin(col)
+ ran(row) for lupin trial S2COWR. The x and y ordinates are displacements in the row and column
directions, respectively, measured as differences in row/column numbers.



accommodation of spatial variation has
resulted in reductions in effective error
variance for all trials (Table 22.2).

Modelling variety effects

Factor-analytic forms for Ge were con-
sidered, maintaining the spatial models
determined using the diagonal form for Ge

(the spatial parameters being re-estimated,
however).  Table  22.3  contains  the REML
log-likelihoods and likelihood ratio tests
(REMLRT) for successive models. The

standard variety (V) main effects and V × E
interaction model was fitted for compara-
tive purposes. The FA(1) model provides
a substantially better fit (P < 0.001). The
V + FA(1) model was superior (P < 0.001) to
the FA(1) but inferior to the FA(2) model
(P < 0.001). In the V + FA(1) model, the esti-
mate of the specific variance for trial 1 was
on the boundary, that is, it was estimated as
zero. In the FA(2) model, the estimates of
the specific variances for four trials were
on the boundary. A zero specific variance
for a trial means that the variety effects for
this trial are completely determined by the
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Local trend model
(row × col)

Extraneous variation*

Effective error mean
square (ems)

RCB/spatial
ems (%)Trial Fixed Random

S2ARDL
S2BURU
S2COWR
S2WARI
S3ARDL
S3BURU
S3COWR
S3HARD
S3WARI
S4CORO
S4GANM
S4KATA
S4KILR
S4SUNT
S4URAN
S4THUD

AR1 × ID
AR1 × ID
AR1 × AR1
AR1 × AR1
AR1 × AR1
AR1 × ID
AR1 × AR1
AR1 × AR1
AR1 × AR1
AR1 × AR1
AR1 × AR1
AR1 × ID
AR1 × AR1
AR1 × AR1
AR1 × AR1
AR1 × AR1

lin(col)
lin(col)
lin(col)
col2

lin(col)
lin(col)

lin(col), lin(row)

lin(col)

ran(col)
ran(row)
ran(row)

ran(col)
ran(col)

ran(col)

0.0079
0.0241
0.0309
0.0426
0.0084
0.0271
0.0441
0.1155
0.0483
0.0189
0.0553
0.2146
0.1133
0.0434
0.0421
0.0344

175
127
162
134
174
107
119
290
102
159
114
110
114
106
124
265

ID, identity matrix.
*lin(col) represents fixed linear regression on column number; col2 represents 2 level fixed factor for
cyclic column effects; ran(col) and ran(row) represent random column and row factors.

Table 22.2. Spatial models for lupin trials.

Variance parameters
% Variance
accountedModel for Ge Ge Total lR REMLRT (P value)

Uniform (V + V × E)
FA(1)
V + FA(1)
FA(2)
FA(2), RCB*

2
32
33
47
47

52
82
83
97
49

1702.39
1801.13
1824.11
1844.49
1452.92

197.48 (P < 0.001)
45.96 (P < 0.001)
40.76 (P < 0.001)

48
54
77

*RCB error structure with common block and error variance for all trials; includes fixed trial effects, as for
spatial analyses.

Table 22.3. REML log-likelihoods, lR, and REMLRT for the models fitted to the lupin data (spatial error
structures fitted unless otherwise indicated).



multiplicative part of the model. If more
than one trial has a zero specific variance,
this means that the genetic variance struc-
ture Ge has less than full rank. In our
experience, this is a common occurrence.
To estimate such a model, a special
algorithm is required (see Thompson et al.,
2001). This has been implemented in
ASREML (Gilmour et al., 1999).

The final column in Table 22.3 gives the
percentage of genetic variance accounted for
by the multiplicative part of the model. This
is calculated as the trace of the matrix ΛΛ′
divided by the trace of (ΛΛ′ + Ψ). The FA(2)
model accounts for 77% of the genetic vari-
ance, which is sufficient for the purposes of
the analysis, namely, variety selection. For
this reason, higher-order models, such as
V + FA(2) and FA(3), were not fitted.

The loadings (after the rotation
described in Chapter 21, the section on the
Spatial Mixed Model for MET Data) are dis-
played in Fig. 22.2. Since the FA(2) model
provided a reasonable fit for the data, the
cosine of the angle between vectors approxi-
mates the genetic correlation between the

pair of environments. Note that, for the
location where both an S2 and an S3 trial
were sown, the two trials are highly corre-
lated, the exception being ARDL (also see
Table 22.4). The trial in Victoria (S4KATA)
is at one end of the spectrum in terms of
genetic correlations.

Elements of the estimated genetic vari-
ance matrix, Ge, can be obtained from the
estimated loadings and specific variances
using the formulae following Equation 21.10
in Chapter 21. The portion of the matrix
relating to the S2 and S3 lupin trials is
shown in Table 22.4. The correlations in this
matrix are well displayed in Fig. 22.2, e.g.
the strong correlations between trials sown
at the same location (correlations under-
lined in Table 22.4).

The final model in Table 22.3 was fitted
with the error structure commonly used in
the analysis of V × E data, namely, an RCB
structure with common block and error
variance for all trials. Such a structure is
implicit in the additive main effects and
multiplicative interaction (AMMI) (Gauch,
1992) approach, for example. To enable a
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Fig. 22.2. Plot of environment loadings from FA(2) model for lupin data. Cosine of angle between vectors
approximates genetic correlation. Centroid of loadings (the ‘average’ environment) is also marked.



direct comparison of residual log-likelihood
with the spatial approach, the fixed effects
included in the spatial analysis to account
for global and extraneous variation were
also fitted in the RCB model. The final two
models in Table 22.3 are not nested, so a
REMLRT cannot be used for comparison.
Instead, we use the Akaike information
criterion (AIC) (Akaike, 1974). The smaller

the AIC value, the better the fit of the model.
The model with spatial errors is far superior
with an AIC value of −3494.98 compared
with −2807.84 for the RCB model. Figure
22.3 presents a plot of the overall variety
means from the two analyses. These were
calculated as predictions at the mean values
of the loadings and so reflect performance in
an ‘average’ environment in terms of genetic
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Fig. 22.3. Plot of overall variety effects for lupin trials from FA(2) model with spatial error structures
against overall effects from model with RCB, common error structure. Vertical/horizontal lines mark cut-off
points for the top 15 varieties in S2 and the top ten varieties in S3/S4. Commercial standard varieties are
labelled ‘C’.

S2 trials S3 trials

Trial ARDL BURU COWR WARI ARDL BURU COWR HARD WARI

S2ARDL
S2BURU
S2COWR
S2WARI
S3ARDL
S3BURU
S3COWR
S3HARD
S3WARI

1.181
0.172
0.760
0.160
0.234
0.408
0.998
0.425
0.167

0.672
13.003
0.520
0.755

−0.029
0.936
0.238
0.661
0.785

1.973
4.481
5.705
0.418
0.150
0.663
0.785
0.563
0.435

−0.541
−8.507
−3.117
−9.757
−0.015
−0.723
−0.210
−0.515
−0.602

−0.264
−0.108
−0.372
−0.049
−1.076
−0.033
−0.229
−0.057
−0.015

1.432
10.892
5.112
7.295
0.111

10.424
0.468
0.705
0.752

1.246
0.985
2.157
0.753
0.273
1.735
1.322
0.465
0.220

1.161
5.988
3.377
4.042
0.149
5.722
1.344
6.316
0.535

−0.522
−8.122
−2.984
−5.395
−0.046
−6.970
−0.725
−3.863
−8.241

Table 22.4. Estimated genetic variance matrix for S2 and S3 lupin trials. Upper triangle contains
covariances × 100; diagonals are variances × 100 (also in bold type); lower triangle contains correlations.



covariances with other environments (see
Chapter 21, the section on The Spatial Mixed
Model for MET Data). This environment is
indicated in Fig. 22.2. While there is reason-
able agreement in overall performance for
the varieties in the S3/S4 trials, there is
substantial disagreement for the varieties in
the S2 trials. Selection pressure for the S2
entries is lower than for S3/S4. If we con-
sider identification of the top 15 lines (25%)
in the S2 trials, there would be ten lines
common to the two analyses (top right-hand
quadrant in Fig. 22.3a). The agreement rate is
thus only 67%. If we consider the identifica-
tion of the top ten lines (18%) in the S3/S4
trials, the agreement rate is much higher,
namely, 90%. A contributing factor to the
levels of agreement in overall variety perfor-
mance between the two analyses is the fact
that most S3/S4 entries were in 12 trials,
whereas S2 entries were in four trials only.
With a smaller number of trials, the effect of
spatial and error variance heterogeneity on
the overall predictions is greater.

Example 2: SA Wheat

Here we consider a series of indicator trials
conducted by the University of Adelaide
(Roseworthy campus) wheat-breeding pro-
gramme. The data set comprises 61
trials spanning the years 1994–1998. The
trials were situated at 20 locations in
the wheat-growing areas of South Australia
(SA) and south-eastern Western Australia
(WA). A total of 72 varieties were grown.

The purpose of the indicator trials was
to obtain information that could be used to
select trial locations for early-stage variety
testing in the Roseworthy programme. It was
important, therefore, to determine the extent
of V × E interaction in target environments
and to characterize and investigate relation-
ships among trial locations. The 20 locations
were thus chosen to be representative of the
environments targeted by the Roseworthy
wheat-breeding programme. The varieties
were chosen to allow expression of V × E
and provide a ‘bioassay’ of the influence
of environmental conditions on variety

performance, that is, they were chosen on
the basis of their known reactions to certain
environmental factors encountered in the
target environments.

Description of data

All trials were designed as RCB, with
between three and six replicates, although
there was sometimes unequal replication
of varieties. Each trial was laid out as a
contiguous rectangular array of plots with
between ten and 25 rows and six and 15
columns. Blocks generally occupied one or
several columns of the trial. The number
of varieties in each trial varied from 39 to
50. Generally, the same varieties were used
for all trials in the same year. A total of
30 varieties occurred in all trials, with 53
varieties occurring in more than ten trials.

A total of 20 locations (see Table 22.5)
were used during the 5 years. Only six loca-
tions were used every year, whereas five
locations were used in 1 year only. In 1996,
there were three trials located at Rose-
worthy. One trial was sown with the normal
seeder and at the normal sowing date. The
other two varied either the seeder or the
sowing date, so additional locations (named
Wintersteiger and Roseworthy – Late, resp-
ectively) were defined. The number of
trials per year varied from eight (1994) to 17
(1998). The trial mean yields varied from
0.48 to 4.92 t ha−1 (Table 22.5). Yields were
lowest in 1994, whereas 1996 and 1997 were
quite high-yielding years, particularly for
trials sown in WA. The final data set com-
prised 11,592 records on 72 varieties tested
in 61 trials, with 2781 variety–trial combi-
nations observed out of the possible 4392
(63%).

Modelling spatial variation

The initial model fitted was as for the NSW
lupins example, namely, with a diagonal
form for Ge and an AR1 × AR1 process for
local trend for each of the 61 trials. There
were 183 variance parameters in R and 98
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fixed effects in X (to account for missing
values, an overall mean and trial effects).
The use of diagnostics resulted in the
addition of terms to the model to accom-
modate non-stationarity and extraneous
variation. The final model included 64

variance parameters in G0 and an extra 83
fixed effects in X. Local trend was modelled
using the AR1 × AR1 process for 59 of the
trials, whereas the remaining two trials
required a one-dimensional model for rows
only.
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Location 1994 1995 1996 1997 1998 Overall*

Buckleboo (BUCB)
Buckley (BUCK)
Coomalbidgup, WA (COOM)
Coonalpyn (COON)
Fisher (FISH)
Hunt (HUNT)
Kapunda (KAPU)
Lake King, WA  (LAKE)
Loxton (LOXT)
Minnipa (MINN)
Nelshaby (NELS)
Palmer (PALM)
Roseworthy (ROSE)
Roseworthy – Late (ROSL)
Stow (STOW)
Tuckey (TUCK)
Wilgoyne, WA (WILG)
Wintersteiger (WINT)
Wittenoom Hills, WA (WITT)
Yeelanna (YEEL)

1.71
1.79
1.51

0.51

1.43
1.38

1.96
0.54

2.22
1.69

3.73

1.43
0.54
2.28
1.46
3.20

2.43
1.21

2.99

1.59

2.84

1.55
0.88
1.83
1.62
4.92
2.40
2.70
1.81

4.46
3.02

2.68
1.20
2.43

2.60
3.01
2.02
0.76

3.42

2.69
2.82
1.74

3.40
3.22

0.76
3.17
3.10
1.11
2.80

3.28
2.33
2.33
1.07
1.39
1.19
2.77

3.07
0.48
2.16

2.62
1.64

0.73
3.14
2.72
1.35
2.05
2.52
2.79
2.49
1.65
0.75
1.70
1.51
3.14
2.16
2.57
1.37
1.78
4.22
2.81
2.25

Overall* 1.45 2.32 2.43 2.52 2.21 2.18

*Overall mean obtained from linear model with trial mean yields as data and year and location as
explanatory factors.

Table 22.5. Summary of SA wheat trial mean yeilds (t ha−1) for each location and year.

Number of Extraneous variation*

Effective error
mean square

RCB/spatial
ems (%)Trial Rows Cols Reps Fixed Random

COOM
FISH
KAPU
LOXT
MINN
NELS
PALM
ROSL
ROSE
STOW
TUCK
WINT
WITT

14
14
21
22
14
21
21
21
21
21
14
21
14

12
15
12
12
15
12
12
12
12
12
15
12
12

4
5
6
6
5
6
6
6
6
6
5
6
4

lin(row)
lin(row)

lin(row)
lin(row)
lin(col)

lin(row)
lin(row)

lin(row), lin(col)
lin(row)

ran(col)
ran(col)
ran(col)
ran(row)

ran(row), ran(col)
ran(col)
ran(col)

ran(row), ran(col)
ran(col)
ran(col)

ran(col)

0.0585
0.1050
0.0498
0.0365
0.0088
0.0209
0.0301
0.0683
0.1282
0.0915
0.0234
0.2231
0.0549

360
170
241
181
140
140
216
154
151
138
176
211
173

*lin(col) and lin(row) represent fixed linear regressions on column/row number; ran(col) and ran(row)
represent random column and row factors.

Table 22.6. Spatial models for wheat trials in 1996. Local trend modelled using AR1 × AR1 for all trials.



A summary of the spatial models fitted
to the 13 trials conducted in 1996 is con-
tained in Table 22.6. The local trend model
for all these trials was AR1 × AR1. Individ-
ual trials were also analysed as RCB. The
reductions in effective error mean square for
the spatial analyses compared to the RCB
analyses are substantial in most cases.

Modelling variety effects

Factor-analytic models for Ge were then
considered. Since the main aim of this
analysis is to investigate the genetic correla-
tion structure, the sequence of models fitted
(FA(1), FA(2) and FA(3)) did not include
variety main-effect models, since these
are intermediate. The best fitting of the
models was the FA(3) (Table 22.7), which
explained 71% of the genetic variance.

In an attempt to answer questions about
site selection, we may examine plots of the
(rotated) environment loadings. The aim
is to choose a site suitable for selecting
varieties with broad adaptation. In the
absence of information about the frequency
of target environments (see also the section
Discussion below), we may consider sites
that are consistently near average; that is,
sites with loadings near to the mean values
of the loadings for individual years. Figure
22.4 shows the loadings for the sites in 1996,
plotted as the first against the second loading
and the first against the third. The position
of the environment with average loadings
is also marked. Clearly, the trial at Fisher
(FISH) was closest to average in this year. As
a summary of the full set of plots of loadings,
the Euclidean distance between individual
sites and the average site for each year was
calculated. The resultant ranking of sites in
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Variance parameter
% Variance
accountedModel for Ge Ge Total lR REMLRT (P value)

FA(1)
FA(2)
FA(3)

122
182
241

367
427
486

10630.4
10858.4
10961.1

456.0 (P < 0.001)
205.4 (P < 0.001)

55
65
71

Table 22.7. REML log-likelihoods, lR, and REMLRT for the models fitted to the wheat data.

Fig. 22.4. Plots of environment loadings for 1996 from FA(3) model for wheat data. Centroid of loadings
(the ‘AVERAGE’ environment) is also marked.



terms of proximity to the average is given in
Table 22.8. This could be used as a guide for
choosing a site.

We may also use the graphical display of
loadings to help identify sites for selecting
varieties with specific adaptation. In this
case, we would investigate sites that deviate
from the average. We must be certain,
however, that the V × E interaction thus
exhibited is repeatable (see, for example,
Cooper et al., 1996).

Simulation Study

A simulation study was conducted to inves-
tigate the impact on variety predictions
from a factor-analytic model of ignoring
spatial variation within trials and error
variance heterogeneity between trials. The
simulation was based on the example data
set used by Smith et al. (2001a) comprising
172 barley varieties tested in seven trials.
Each trial was designed as an RCB and
laid out as 43 rows by 12 columns with
each block of four columns constituting a
complete replicate. The simulations were

based on a model with (fixed) environment
and (random) variety main effects and
an FA(1) structure for the (random) V × E
interactions. When fitted to the data in con-
junction with a separate spatial covariance
structure for the errors for each trial,
namely, AR1 × AR1, the estimated variety
main-effect variance component was σv

2 =
0.00292. The estimated variance parameters
associated with the factor-analytic structure,
that is, loadings and specific variances, were
as in Table 22.9. The estimated spatial para-
meters (row and column autocorrelations
and spatial variance) were as in Table 22.10.

The genetic parameters in Table 22.9
and spatial parameters in Table 22.10 were
used to generate 100 data sets, each compris-
ing three replicates of 172 varieties in each
of seven trials. The spatial configuration of
rows, columns and replicates was as for the
real data.

Three models were fitted to the data
sets. The genetic model was the same in all
cases. At the error level, the models were:

• Model 1: separate AR1 × AR1 structure
for each trial (implicitly includes a
separate error variance for each trial).
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Site 1994 1995 1996 1997 1998

BUCB
BUCK
COOM
COON
FISH
HUNT
KAPU
LAKE
LOXT
MINN
NELS
PALM
ROSE
ROSL
STOW
TUCK
WILG
WINT
WITT
YEEL

3
6
4

5

7
1

2
8

1
4

10

8
7
2
6
5

9
3

3

1

12

10
8
5
7

13
2
9
4

6
11

9
5
8

1
4
6

11

7

3
12
10

13
2

13
16
17
2

12

8
14
3
6
4

11
10

7
15
1

9
5

Table 22.8. Site rankings for wheat data in terms
of proximity to average site in each year (a rank of
1 is closest to average).

Trial λi ψi

1
2
3
4
5
6
7

−0.062
−0.012
−0.132
−0.005
−0.068
−0.131
−0.074

0.00221
0.00244
0.00141
0.00279
0.00267
0.00380
0.00477

Table 22.9. Estimated factor-analytic parameters
for V × E interactions from analysis of barley data.

Trial ρcol ρrow σ2

1
2
3
4
5
6
7

0.072
0.704
0.096
0.172
0.183
0.082
0.063

0.549
0.598
0.604
0.686
0.477
0.490
0.653

0.0092
0.0134
0.0248
0.0200
0.0252
0.0279
0.0166

Table 22.10. Estimated spatial parameters from
analysis of barley data.



• Model 2: fixed block effects for each
trial, common error variance for all
trials.

• Model 3: fixed block effects for each
trial, separate error variance for each
trial.

The average per cent bias in estimates of
the loadings and specific variances over the

100 simulations are shown in Figs 22.5 and
22.6. The average per cent bias for both the
loadings and specific variances are similar
(and small) for the models in which differ-
ent error variances are allowed. The bias,
when an RCB model with common error is
assumed, is very high for most of the specific
variances.
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Fig. 22.5. Per cent bias in estimates of loadings for the V + FA(1) model with three error models:
(a) spatial, (b) RCB same error and (c) RCB different error. The overall loading is the square root of the
variety main effect variance.

Fig. 22.6. Per cent bias in estimates of specific variances for V + FA(1) model with three error models:
(a) spatial, (b) RCB same error and (c) RCB different error.



The models were compared in terms of
the mean squared error of prediction (MSEP)
for the overall variety effects and the variety
effects for each trial. The overall effects were
calculated as predictions at the mean values
of the loadings (see Chapter 21, the section
on The Spatial Mixed Model for MET Data).
For ease of interpretation, the MSEP for
variety effects for each trial have been
expressed relative to the (true) genetic
variance for the trial. For trial i the latter
is obtained as:

σ σ λ ψgi v i i
2 2 2= + +

where the values for the parameters are
taken from Table 22.9. The MSEP for over-
all variety effects have been expressed rela-
tive to the overall (true) genetic variance,
which is obtained as:

σ σ λg v
2 2 2= +

where λ is the mean of the λi values.
The averages of these (relative) MSEP

values over 100 simulations are shown in
Fig. 22.7. Figure 22.8 shows the average cor-
relation between true and predicted effects.
The MSEP and correlations are consistently
best for the spatial model. With respect to
individual trials, the superiority of this
model over the RCB models is greatest for the
trials with the strongest spatial trend (trials 2

and 4). The spatial model is also superior in
terms of the overall variety predictions.

We also generated 100 RCB data sets
with fixed block effects and common error
variance for all trials. For these data, there
was no loss associated with fitting the spa-
tial, heterogeneous error model (A.B. Smith,
B.R. Cullis and R. Thompson, unpublished
results). The per cent bias in estimated
genetic variance parameters and the MSEP
of prediction were very similar for the spa-
tial, heterogeneous error model and the RCB,
common error model.

Adjusting for Spatial Field Trend in
QTL Detection and MAS

Another application in which the accom-
modation of spatial field trend is important
is the detection of quantitative trait loci
(QTL) and marker-assisted selection
(MAS). Moreau et al. (1999) comment that
statistical design and analysis issues are
often neglected in QTL detection experi-
ments. They conducted analyses for MAS
for grain yield in maize and showed that
when ‘spatial field heterogeneity is consid-
ered through appropriate statistical models
the accuracy of genetic value predictions
is improved and the same genetic gain
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can be achieved with a reduced number of
trials’. Standard QTL software for interval
mapping does not allow for such models.
Moreau et al. (1999) suggest that a two-stage
approach could be used in which spatially
adjusted means are obtained from an analy-
sis of the raw plot yields and are then used
as data for the standard mapping software.
They comment that an integrated, one-step
approach would be preferable. Such an
approach is presented in Eckermann et al.
(2001), who use a mixed model for QTL
detection based on pairwise regressions on
marker covariates, this being done simulta-
neously with the modelling of field trend
using the spatial approach of Gilmour et al.
(1997). Smith et al. (2001b) extend this
approach for quality trait data that are char-
acterized by two potential sources of error
variation, namely, the field experiment and
the measurement process in the laboratory.
They conduct QTL detection for milling
yield in wheat in several doubled haploid
populations. In all cases, the accommoda-
tion of spatial field trend and/or variation
in the laboratory had a large impact on
the detection of QTL compared with the
standard approach, in which raw doubled
haploid means were used as data in a
standard mapping programme. In the latter,

the significance of QTL effects was often
overestimated. More importantly, an anom-
alous (apparently highly significant) QTL
was detected in the standard approach. The
spatial approach revealed that the effect
was due purely to extraneous variation in
the laboratory process. This highlighted the
importance of not only adjusting for field
and laboratory trend in the analysis but also
accommodating these trends at the design
stage, allocating varieties to field plots and
‘positions’ in the laboratory process in some
optimal way.

Discussion

The analyses of the examples in this chapter
clearly demonstrate the strengths of the spa-
tial multiplicative mixed model of Smith
et al. (2001a) for the analysis of V × E data.
The models provided a good fit to the data,
in terms of both V × E effects and error vari-
ation. Important information about overall
variety performance and the nature of V × E
interaction was obtained.

The aim of the analysis of the lupin
data was to provide information for the
purposes of identifying the highest-yielding
lines for promotion to the next stage of
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Fig. 22.8. Average correlation between true and predicted variety effects (overall and for each trial) for
V + FA(1) model with three error models: (a) spatial, (b) RCB same error and (c) RCB different error.



testing. Factor-analytic models with spatial
adjustments were used to obtain superior
estimates of the variety performance in
individual trials and important information
about the genetic correlation structure for
environments. To make selections based on
yield, we require an index that combines
variety means across trials in some meaning-
ful way. We may choose to weight trials
based on the importance of the target
population of environments they represent
(see, for example, Cooper and Byth, 1996).
Devising an appropriate weighting scheme
is a difficult issue. Long-term genetic corre-
lations between test and target environments
would be useful and could be obtained
through the use of factor-analytic models on
appropriate data sets. In the absence of such
a scheme for the lupin data, we calculated
predictions of variety performance at
the mean values of the loadings, that is,
performance in an ‘average’ environment
in terms of genetic covariances with other
environments. Overall variety performance
calculated in this way is the current yield-
selection criterion used in most NSW
Department of Agriculture breeding pro-
grammes. Modifications may be made if
the estimated genetic correlation matrix
indicates unusual trials.

The aim of the analysis of the wheat data
was to determine relationships among geo-
graphical locations (across years) to identify
locations suitable for early-stage yield test-
ing. In the earliest stage, varietal selection is
for broad adaptation, so the location must
consistently reflect average performance
across the range of target environments. An
approximate solution to the location selec-
tion problem was presented and was based
on the loadings from a factor-analytic model
on the two-way table of V × E effects. For a
more exact solution, we must take account of
the fact that environments are a factorial
combination of locations (L) and years (Y).
Thus, we would like to partition V × E
interaction as V × L, V × Y and V × L × Y.
Technically, this raises no difficulties, but
conceptually, there are issues regarding the
type and compatability of structures fitted to
the individual sources of V × E.

In both examples, the gains in accuracy
and precision of spatial analysis compared
with RCB analysis of individual trials were
clearly shown. We used the spatial approach
of Gilmour et al. (1997), but other spatial
approaches or analyses based on incomplete
block designs will be superior to the RCB
analysis and can be incorporated in the
mixed model for V × E data. In terms of
the combined analysis, the lupin example
showed the impact on varietal selection of
using spatial models and allowing a separate
error variance for each trial compared with
RCB models with common error variance.
Despite the low levels of spatial trend in the
lupin data, selection decisions for the S2
entries were very different under the two
analyses, whereas for the S3/S4 entries they
were almost identical. The key factor here
was that the S2 entries were grown in fewer
trials, so the effect of spatial and error
variance heterogeneity on the overall predic-
tions was greater. This has important conse-
quences for the analysis of early-generation
breeding data, which typically involve a
large number of varieties but a small number
of trials (possibly only two or three).

The simulation study provided addi-
tional evidence about the impact of ignoring
error variance heterogeneity and spatial
variation on variety predictions from a
factor-analytic model. The spatial, heteroge-
neous error model had a lower mean squared
error of prediction and higher correlation
between true and predicted effects than
the RCB models (common or heterogeneous
error), both for variety effects for individual
trials and variety effects overall. The impact
of ignoring spatial and error variance hetero-
geneity is clearly related to the degree of
heterogeneity in the data set under study.
The  level  of  error  variance  heterogeneity
and strength of spatial correlation in the
simulated data is low by Australian
standards. The impact was non-ignorable,
however. Additionally, the realized line
mean heritability in the simulated data
was high and it is expected that, with
lower heritabilities, the choice of error
model will have a larger influence on the
predictions.
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Introduction

Statistical modelling is based on the specifi-
cation of expected values and variance–
covariance structures of observed data. The
traditional fixed linear model, coupled
with ordinary least-squares estimation
procedures, is too restrictive to perform
satisfactory data analyses for the typical
data structure of most breeding programmes
because of the independence assumption.
Error structure in ‘real-world’ experiments
is often more complex than that used in
standard linear models for conventional
data analysis (Stroup, 1989).

In contrast, the general linear mixed
model can easily accommodate covariances
among observations. The mixed model han-
dles correlated data by incorporating ran-
dom effects and estimating their associated
variance components to model variability
over and above the residual error (Wolfinger
and Tobias, 1998). Because of the estimation
procedures usually involved, mixed-model
approaches can circumvent the problems
associated with unbalanced and incomplete
data.

Mixed-model analysis applies particu-
larly to research involving factors with a
few levels that usually can be controlled by
the researcher (fixed) as well as factors with
levels that are beyond the researcher’s con-
trol (random). These random factors vary

from experiment to experiment and may be
interpreted in the context of a symmetric
probability function. Most breeding trials
have some mixed-model aspect. At crossing,
genetic effects may be reasonably assumed
as normal random variables (Henderson,
1990). During the early stages of a selection
programme, the nature of genotypic effects
may still be regarded as random. At later
selection stages, genotypes might be
assumed to be fixed, but environmental
and/or genotype–environment interaction
(GEI) effects may be considered as random
variables, since they represent a larger target
population (Stroup, 2000).

Regular mixed-model applications in
plant breeding have focused on variance
component estimation and identification of
appropriate error terms to test fixed-effect
hypotheses; rarely have they been used
for the most general purpose of modelling
the underlying covariance structure and
predicting random effects. This chapter dis-
cusses applications of mixed-model theory
to predict cross performance and to analyse
multi-environmental trials (METs).

Background: a Mixed-model Framework

The general form of a linear mixed model is:

Y = Xb + Zu + e
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where Y is the response vector (data), X and
Z are known design matrices, b is a vector
of fixed parameters, and u (random effects)
and e (error terms) are unobservable ran-
dom vectors. The E(u) and E(e) are usually
assumed to be zero. Assumptions regarding
the structure of G – the variance–covariance
matrix of the random effects in u – and R –
the variance–covariance matrix of the ran-
dom error terms in e – will define a particu-
lar mixed model. Different models for the
variance–covariance of the data, V = ZGZ′ +
R, are obtained by specifying the structure
of Z, G and R.

The simplest form for G and R is one
that arises from the independence and con-
stant variances of the random effects and the
error terms. Independence in the random
effects does not imply that the observations
are independent. On the contrary, one sets
up a common correlation among all observa-
tions having the same level of u. Laird
and Ware (1982) consider the unstructured
model for a covariance matrix, i.e. the more
general case where all elements of the matrix
are allowed to be different. Intermediate
structures for G and R are more efficient in
plant breeding. They allow for modelling
correlations with a smaller number of co-
variance parameters than the unstructured
one. In general, genetic correlations may be
introduced into the model trough G and
experimental correlations among observa-
tions may be modelled by the off-diagonal
elements of R. When data are indexed in
space (georeferenced data), the covariances
in R may reflect correlations due to spatial
arrangement of the experimental units.

Mixed-model solutions can be written
as:

( )I= ′ ′− − −X V X X V y1 1 1

( )$u GZ V y X= ′ −−1 I

If G, R and Z, and hence V are known,
the generalized least-squares solution for b is
the best linear unbiased estimator (BLUE)
and the solution for the prediction of ran-
dom effects is the best linear unbiased pre-
dictor (BLUP). The BLUP, as a technique for
predicting random effects (Harville, 1990;
Robinson, 1991), should be understood as a

subject-specific mixed-model prediction. It
represents the conditional expectation of the
random effects, given the observed data, and
is also a Bayesian estimator under normal
priors. The BLUP of a linear combination of
fixed and random effects is the linear combi-
nation of the BLUE of fixed effects and the
BLUP of random effects.

Theoretically, BLUPs have the smallest
mean squared error of prediction among
all linear unbiased predictors, provided the
assumed model holds and the parameters of
the model are known (Searle et al., 1992). In
practice, however, V is usually unknown.
Therefore, estimation of covariance para-
meters usually comes prior to estimation of
b and u. Assuming normality, the restric-
ted maximum likelihood method (REML)
(Patterson and Thompson, 1971) or related
versions are usually preferred for estimating
the variance components in a mixed model.
To indicate that G and R have been esti-
mated prior to getting the BLUPs, the term
‘empirical BLUPs’ (EBLUPs) is frequently
used instead of BLUPs to refer to $u.

Consider a simple model with one
random effects vector, u, representing
genotypic effects and the response vector, Y,
containing phenotypic data for j = 1, . . . , g
genotypes. The prediction equation for the
mean performance of genotype j, µj = µ + uj,
under a mixed model is ( )$ $µ µ µj jw y= + − ,
where µ is the population mean and w is a
weighting or shrinkage factor.

If G and R have the simplest structures
(G = σu

2I, R = σe
2I), the elements of GZ′V−1,

which define the weights w, are functions
of ( )σ σ σu u e

2 2 2/ + . Thus, the weights may
represent the heritability of the trait. Thus,
a BLUP is a centred, fixed-effects estimate
shrunken towards µ, with more shrinkage
taking place for smaller value ratios of
the estimated variance components in w.
Alternative models for G and R lead to
different BLUPs. Therefore, the term BLUP
is quite general and a precise identification
of the underlying model is needed to avoid
confusion.

To do model selection, the log-likelihood
ratio test criterion can be used with nested
mixed models. The procedure demands the
evaluation of the restricted log-likelihood
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(LLR) for the reduced model (model with
smaller number of parameters) and for the
full model (model with higher number of
parameters). The test criterion for the likeli-
hood ratio test is:

L = −2{LLR (reduced model) − LLR

(full model)}

For the null hypothesis that the reduced
model is not different from the full model,
under normality, the likelihood ratio statis-
tic is distributed as χ2, with degrees of free-
dom equal to the difference in the number
of parameters of both models. If the fixed
part of the two mixed models under com-
parison is the same, the test compares the
covariance structures of the two models.
Information criteria, such as the Akaike’s
information criterion (AIC) (Wolfinger,
1993), are used to compare any set of mixed
models; thus they are suitable for non-
nested models.

Mixed Models for Cross Prediction

The ultimate goal of plant breeding is to
generate productive cultivars improved for
one or more traits. The breeding process
begins with the selection of parents that
possess the desired attributes. The choice of
parents and hybrid combinations affect the
quality of the progeny. Parents are typically
derived from advanced stages of selection
or they are recognized commercial lines or
cultivars. Selecting superior genotypes in
the early generations might be highly inef-
fective for several crops (Gopal et al., 1992).
Several researchers have demonstrated the
gain in efficiency of selection by using cross
prediction trials or progeny tests for family
selection (Simmonds, 1996). Progeny tests
are commonly employed at the beginning of
each breeding cycle in clonally propagated
species (DeSousa-Vieira and Milligan, 1999).
In hybrid crops, the advanced material
for further testing or commercialization
depends on which inbreds to cross and the
development of new inbreds depends on
F2 × tester crosses. However, only a few
of all potential single crosses are actually
made and evaluated in progeny tests, since

the amount of resources needed for testing
all possible crosses is large.

Regularly, the performance of a cross
combination is predicted by calculating
mid-parent values (MPVs) of the raw or
scaled parental mean. However, it is impor-
tant to note that parental generations are
rarely discrete. They commonly originate
from different selection and crossing series
(for example, in sugarcane (Saccharum
spp.)). Because the genotypes that represent
potential parents often derive from different
stages of selection, the amount and precision
of data may vary dramatically. Improved
estimates of parental means for a trait are
often obtained with some form of additive
linear model. Such models adjust observed
values for non-genetic effects (Panter and
Allen, 1995). A classic method of obtaining
parental genetic effects is by combining data
across progeny tests and considering all
effects in the model as fixed (White et al.,
1986). Unfortunately, cross appraisal data-
bases are typically incomplete and unbal-
anced, which creates theoretical concerns
about the fixed linear model underlying
the MPV prediction (Henderson, 1973).
Mixed models provide alternative analytical
approaches that may overcome limitations
of the fixed analytical approach for cross
prediction (Henderson, 1974).

BLUP of genetic merit has been used for
selecting tested material in plant breeding
(Bridges, 1989; Chang and Milligan, 1992).
Mixed-model-based prediction, i.e. BLUP,
has also been proposed for predicting the
performance of untested crosses in maize
(Zea mays L.) (Bernardo, 1995, 1996),
soybean (Glycine max L. Merr.) (Panter
and Allen, 1995) and sugarcane (Balzarini,
2000). In maize, validation results have
indicated that BLUP is useful, not only
for a routine selection of single crosses but
also for choosing F2 populations for inbred
development (Bernardo, 1999).

The mixed-model prediction of untested
crosses relies on performance data of tested
crosses and the genetic relationships among
tested and untested crosses. BLUP uses data
about related individuals to yield informa-
tion for a target individual prediction (an
untested cross). If data are not available for
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the target cross but are available for two
crosses genetically related to the target cross,
the predicted performance of the target
cross is obtained by a linear combination
of tested cross data weighted by the degree
of relatedness of these two crosses and the
target, as well as by the heritability of
the trait.

To quantify the degree of related-
ness among individuals, coefficients of
coancestry might be calculated from pedi-
gree data (Falconer, 1989). The infinitesimal
model commonly used in traditional breed-
ing does not use the knowledge about loca-
tion and number of genes that determine a
trait. Molecular genetics provides new strat-
egies for modelling genetic covariances. It is
possible to analyse progeny test data know-
ing the parent genotypes and their genetic
relationship from molecular-marker infor-
mation. Bernardo (1994) predicted maize
single-cross performance using restriction
fragment length polymorphism (RFLP)
marker data to assess genetic relationships
among parental inbreds. At present, it is
feasible to study the differences among
individuals on the basis of knowledge about
their genotype gained from molecular data
(Bernardo, 1997). By incorporating a new
design matrix related to gene random effects,
the mixed-model approach allows deeper
understanding of how important traits are
inherited. The covariance between two of
the random effects can be expressed as
a function of their conditional covariance
for the given marker genes, i.e. a variance
component.

To predict hybrid performance in maize,
Bernardo (1996) used a BLUP procedure
that requires: (i) available data on all single
crosses (heterotic group 1 × heterotic group
2 of parental inbreds) that have been evalu-
ated in yield trials – say, nt crosses; and
(ii) coancestry coefficients among parental
inbreds of each group. The linear mixed
model used to represent a single-cross per-
formance contains yield-trial fixed effects in
b and three vectors of random genetic effects.
The random vector u1 involves general com-
bining-ability effects of parental inbreds
in group 1, u2 involves general combining-
ability effects of parental inbreds in group

2 and u3 is a vector of specific combining-
ability effects.

After the component variances (genetic
and residual variances) related to each type
of random effect have been estimated from
the tested cross data, the performance of nu

untested or new crosses is predicted as
Yu = CV−1Yt, where Yu is an nu-dimensional
vector containing the predicted performance
of untested crosses (BLUPs); C is an nu × nt

matrix of genetic covariances between
the untested single crosses and the tested
single crosses (obtained from coancestry
coefficients or molecular-marker data), V is
the nt × nt phenotypic variance–covariance
matrix among the tested crosses and Yu is an
nt-dimensional vector containing the mean
performance of tested crosses corrected for
fixed trial effects, i.e.:

Yt = (Z′Z)−1Z′(Y − XI)

It is important to note that the cross
predictor is not only based on the genetic
relationship among single crosses but also
involves V, which depends on the under-
lying mixed model for the tested cross
responses. Therefore, various BLUPs can be
obtained by modelling V.

Models involving female and male ran-
dom parental effects and genetic covariances
among parents are not a unique strategy for
cross predictions. Chang (1996) suggested
that using genetic covariances among the
parents of sugarcane crosses to modify pre-
dictions would not be fruitful. He speculated
that parents, having been obtained through
a highly selective process, might vitiate
the value of such covariances, because the
genetic covariances estimated from pedigree
analysis assume randomly selected parents.
The offspring used in a progeny test are
not selected and hence using the genetic
covariances among crosses may enhance the
predictive value of BLUPs.

Alternative models to predict single-
cross performance were simultaneously
assessed in sugarcane (Balzarini, 2000).
Among others, the traditional MPV (fixed-
model prediction) was compared against a
predictor derived from a one-way classifica-
tion model involving a random cross effect
to model the genetic portion of the response
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(C-BLUP). The additive genetic relationship
among crosses was used to set up covarian-
ces among tested and untested cross effects.
By tracking the pedigree of each cross and
assuming parents are not related, covarian-
ces among crosses within and between
trials are easy to obtain based on the cross
parentage. I used coancestry coefficients to
establish these genetic relationships. After
variance components were obtained from
such a mixed model for the tested crosses,
BLUP of the untested cross effects was
obtained using the expression, Yu = CV−1Yt.
To obtain MPV, female and male parent
means, after adjusting for fixed trial effects,
were calculated for each clone that was
used as a parent in crosses evaluated in
cross appraisal trials. For each potential new
cross, corresponding female and male parent
means were averaged.

Using sugarcane data from the
Louisiana Sugarcane Variety Development
Program (LSVDP), these predictors, among
other versions of BLUPs, were compared
by cross-validation procedures. Information
from 719 parental combinations obtained
after 5 years of cross appraisal trials for five
traits (stalk diameter, stalk height, stalk
weight, stalk number and cane yield) was
used. Models with BLUP-based predictors
showed smaller mean-square prediction
error and higher fidelity of top cross identifi-
cation compared with MPV for all traits
evaluated. The C-BLUP was better than
the MPV, but not consistently the best
one among the BLUPs assessed. A simpler
BLUP-based predictor calculated as a
function of the female and male BLUP
(MP-BLUP) of a two-way mixed model was
better. Possible factors for the behaviour of
BLUPs based on cross effects with regard to
MP-BLUP might be related to an insufficient
number of related crosses per cross, equal
weighting of female and male parent-related
crosses (the control of experimental errors
related to identification of female and male
parents is different when crossing sugar-
cane) and dominance variance. Those spe-
cific aspects of the sugarcane data, however,
do not exclude a BLUP based on cross effects
and genetic relationship as a valid alterna-
tive to the BLUP based on parental effects.

All BLUP-based predictors were better than
MPV.

The rank correlations between predicted
and observed performances of untested
crosses ranged from non-significant values
for stalk number to a mean correlation of
0.52 (P = 0.001) for stalk diameter. The
maximum expected correlation between
the predicted and the observed value is not
unity but depends on the heritability of the
trait (Bernardo, 1992). This is because, in the
cross-validation procedure, we are correlat-
ing predicted genotype with phenotypic
values. Heritability for cane yield is not
higher than 0.30; thus the correlation
between genotype and phenotype, (0.30)1/2

= 0.55, is the upper bound for an observed
correlation. Bernardo (1999) reported that
correlations between the predicted and the
observed performance of untested crosses,
obtained by cross-validation across 16
heterotic patterns, ranged from 0.46 to 0.77
for maize yield and were 75–85% of the
maximum expected value. Bernardo (1992)
clarified that a correlation between pre-
dicted and true genetic value of 0.60 would
allow a breeder to select the top 20 out of 100
single crosses, while ensuring at least an
80% chance of retaining the best hybrid in
the selected group. Therefore, BLUP-based
predictors have been shown to be effective
for predicting the performance of untested
crosses in more than one crop.

Mixed Models for
Multi-environment Trials

Most important traits of commercial crops
are controlled by polygenes with various
kinds of genetic effects that are affected by
the environment. Variety trials commonly
involve several environments. Replicated
yield trials involving several environments
or METs are used in late stages of breeding
programmes to select genotypes based on
yield and other economically important
traits. Broad (across environments) infer-
ence, narrow (environment-specific) infer-
ence and GEI are the focus in MET (Kang
and Gauch, 1996; Littell et al., 1996; Stroup,
2000).
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The traditional analytical approach for
broad inferences is based on genotype means
that are subjected to multiple pairwise com-
parisons, and it does not take into account
GEI. Narrow inference relies on comparisons
of genotypic means in specific environ-
ments. Unfortunately, this procedure does
not use all the available information. It
is only possible to infer performance in
a specific environment for genotypes that
have been tested in that environment.

The stability approach addressing GEI
(Crossa, 1990; Lin and Binns, 1994) quanti-
fies a genotype’s contribution to the overall
GEI from a fixed-effects model. The additive
main effects and multiplicative interaction
(AMMI) models (Gauch, 1988), coupled
with biplots for visual representation
(Gabriel, 1971), have been broadly used to
study GEI. They work under a fixed-model
framework and use least-squares estimation
procedures to estimate the interaction para-
meters. The estimation procedure has lim-
ited its application to cases where the origi-
nal two-way table of genotype–environment
(GE) data is complete. The information
related to variety trials is often incomplete,
however, because not all genotypes may
be evaluated in all environments. The
assumption of homogeneity of variances for
the error terms is important to obtain clear
GEI patterns when least-squares estimation
is involved.

The mixed-model theory provides a
more relaxed approach to dealing with MET
data. Closely related mixed models related
with different models for G and R can be
used for genotype mean separations and
GEI studies. Under a unified mixed-model
approach, stability parameters are integrated
into broad and narrow inferences about
genotype performance. Environment-specific
inferences are obtained from the conditional
mean of the jth genotype in the ith envir-
onment. The likelihood-based techniques
involved in mixed-model estimation pro-
vide a more flexible analytical approach for
the analysis of METs because balanced data
are not required.

The typical model for a random
variable, Yijk, occurring in row i, column j
and replication k within of a two-way table

(with rows representing environments and
columns representing genotypes) is:

Yijk = µ + Ei + Rk(i) + Gj + GEji + εijk

where Yijk is the kth observation for the jth
genotype in the ith environment, µ, Ei, Gj,
Rk(i), and GEji denote the overall mean, the
environmental effect (i = 1, . . . , s), the geno-
type effect (j = 1, . . . , g), the replication-
within-environment effect (k = 1, . . . , r),
and the GEI effect, respectively; and εijk is
the error term associated with Yijk.

Only a few highly selected genotypes
are involved at late stages of a breeding cycle.
The genotype effects are seldom treated
as random effects, whereas environments
and/or GEI may be regarded as random vari-
ables. A random approach for environment
and GEI effects allows the modelling of
correlation and heterogeneous variances
(Cullis et al., 1996; Magari and Kang, 1997;
Piepho, 1997, 1999). Thus, the GE terms
are regarded as normal random effects with
zero means but with a variance–covariance
matrix not necessarily implying independ-
ence and homogeneity of variances. Model-
ling the variances and covariances of the
random GE terms should permit a com-
parison of the mean performance in a
more realistic manner and produce stability
parameters and GE analysis as a by-product
of the mixed-model approach.

For simplicity, I shall assume independ-
ence of error terms and also independence
of environment and replications within
environment effects. This means that the
covariance between the random terms of
every pair of different environments is zero
or, in other words, the environments provide
independent information. Although environ-
ment effects are uncorrelated, the response
means within a given environment are not.
Therefore, for observations in the same
environment, Cov (Yij,Yij′) = Var(Ei) + Cov
(GEij, GEij′) for j ≠ j′, whereas for those in
different environments, Cov(Yi′j,Yij′) = 0 for
i ≠ i′.

Different models can be hypothesized
for the variance–covariance structure of the
random effects (G) to model yield variability
among environments. The regular mixed
analysis of variance (ANOVA) assumed that
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all the GE terms have the same variance and
are independent. Magari and Kang (1997)
used a mixed model involving a diagonal G
matrix with heterogeneous variances (by
genotype) for the GE random terms. Thus,
the model assumes that all GE terms
involving a particular genotype have the
same GE variance, and there will be as
many different GE variance components
as the number of genotypes. The REML
variance components, assignable to each
genotype, estimate the same parameters as
Shukla’s stability variance (Shukla, 1972).

By further modelling the variance–
covariance structure of environment and
interaction random effects, several well-
known stability measures can be expressed
as parameters of closely related mixed mod-
els (Piepho, 1999). The common regression
approach for studying genotype sensitivities
to environmental changes with multipli-
cative models for the GE terms (Finlay
and Wilkinson, 1963; Eberhart and Russell,
1966; Gauch, 1988; Zobel et al., 1988) can
be handled by integrating a factor-analytic
variance–covariance structure (Jenrich and
Schluchter, 1986) into a mixed model for the
observed yield (Piepho, 1998). A multiplica-
tive interaction model can be as follows:

GE x dij mj mi ij
m

M

= +
=

∑ λ
1

where λ mj mi
m

M

x
=

∑
1

is the sum of multipli-

cative terms used to explain interaction
signals and dij is the residual interaction
term. The values λmj and xmi are the mth
scores (m = 1, . . . , M; M ≤ min(g − 1, s − 1))
for the jth genotype and the ith environment
of a regression model, respectively.

Each multiplicative term represents a
linear regression model of the residuals from
the main effect model for the jth genotype on
a latent unobservable variable related to the
ith environment. A sum of multiplicative
terms is used to model the GE variability
pattern in more than one dimension. The
subscript m indexes the axis of variability
on which the fixed genotype and random
environment scores are obtained. Thus, for
each axis of variation, the genotypic score,

λj, can be interpreted as the response of the
jth genotype to changes in some latent envi-
ronmental variable with value xi in the ith
environment. The model for the GE terms
resembles the non-additive part of the
traditional AMMI models, but in the fixed
AMMI models environment scores are fixed.
A model analogous to the Eberhart and Rus-
sell (1966) regression model can be obtained
in the mixed-model framework by excluding
the environmental main effect from the
model and using one multiplicative term for
the GE random effect:

GEij = λjxi + dij

where λj is the sensitivity of the jth
genotype to a non-observed environmental
variable xi and dij is the unexplained part of
the GEI. The deviations, dij, are allowed to
have a separate variance for each genotype,
σd j( )

2 . The absolute value of λj indicates geno-
type sensitivity to environmental changes
expressed in xi.

Multiplicative interaction models
provide a useful tool for analysing GEI in
plant breeding. Typically, they have been
used in a fixed-effects model framework
in the analysis of complete GE data sets.
In the traditional fixed-model approach,
the multiplicative term(s) is(are) part of the
expected value of the response, whereas,
under the mixed model, it belongs to the
model covariance structure.

By assuming a factor-analytic structure
for the G matrix of the GE terms in a given
environment, the genotype scores on each
multiplicative term, λmj, for j = 1, . . . , g,
are estimated as covariance parameters. The
homoscedastic factor-analytic model for the
variance–covariance matrix of the GE terms
in environment i, assuming unitary variance
for xmi, is:

( )
= ′∑ LL dGE i

+ σ2I g/

where L is a g × M matrix of constants, λmj

(m = 1, . . . M); each column of L contains
the genotype scores for one of the M multi-
plicative terms. By analogy with factor anal-
ysis, the genotypic scores are also called
‘factor loadings’. If only one environmental
latent variable is considered, the model will
contain only one multiplicative term, and L

Applications of Mixed Models in Plant Breeding 359



will be a g × 1 column vector carrying the
factor loading of each genotype in the only
multiplicative term involved; the structure
of ∑(GE/i) under a model with one multipli-
cative term is called ‘factor-analytic 1’ or
FA(1). If more than one, but not all, multi-
plicative terms are involved, L is a matrix
of dimension g × m, with m equal to the
number of multiplicative terms, and the
structure of ∑(GE/i) is called FA(m). By
running several mixed AMMI models with
different numbers of multiplicative compo-
nents and keeping, without changes, the
fixed portion of the model, it is possible to
obtain sequential likelihood ratio tests to
determine the number of terms that should
be retained to explain the GE pattern in the
matrix of residuals from the additive model.

The factors, xmi, representing the envi-
ronmental scores, are non-observable random
variables. However, they can be predicted by
BLUP. The BLUP of the environmental score
vector, xi, contains the scores for each of the
multiplicative terms of a given environment.
The environmental scores of the ith environ-
ment are a M × 1 vector containing M envi-
ronmental scores for the ith environment,
which can be expressed as:

( ) ( )EBLUP x Y Xbi i i= ′ −$ $L S ι
−1

where  the  hats  over  the  matrix  of  factor
loadings and the covariance matrix of Yi

indicate estimates of the covariance para-
meters, and Xbi represents the generalized
least-squares estimates of the fixed para-
meters in environment i.

Balzarini (2000) compared the biplots
obtained by plotting on the mth axis λmj as
genotype scores and the mth element of the
scaled EBLUP(xi) as the score for the ith
environment against the traditional biplot
obtained from a fixed model. Biplots under
both approaches were obtained for several
complete data sets of variety trials. The
different procedures to obtain the biplots,
under both approaches, showed the same
interaction pattern. An important advantage
of the mixed-models framework is that
biplots can still be obtained with incomplete
data.

Plant-cane data of LSVDP outfield trials
from 1996 to 1998 (Quebedeaux et al., 1996,

1997; Guillot et al., 1998) were used to com-
pare prediction accuracy of several mixed
models against a fixed-model approach.
Regular outfield tests involve ten to 12 geno-
types per trial. Each year, trials are con-
ducted at several (seven to ten) commercial
farms distributed throughout the 158,000 ha
crop region. Each trial is laid out in a ran-
domized complete-block design with three
replications. A prediction accuracy measure
(mean square prediction error) of cane yield
(Mg ha−1) was obtained by a ‘leave-one-
block-out’ cross-validation procedure. The
fixed-model approach consistently produced
larger prediction errors in cane-yield narrow
inferences than any of the mixed models
discussed here. Stroup (2000) showed that a
type I error-rate inflation should be expected
when testing genotype performance in the
presence of even a small magnitude of GE
variation under a fixed-model approach
(with or without GE terms).

Summary and Conclusions

Identifying the best cross combinations
among those that cannot be tested in prog-
eny tests should improve the likelihood of
producing élite progeny without increasing
field costs. Large crossing databases are
common in all breeding programmes, so
data on tested crosses are already available.
By choosing a particular mixed model to
estimate variance components and to link
the tested and untested cross information,
BLUPs can be obtained from any software
that provides for mixed-model analyses.

If it is possible to regard environments
and GE terms of an MET as random vari-
ables, breeders can visualize genotype mean
performance and GE measures as parameters
of a general mixed model. By using the
mixed-model approach properly, genotype
broad performance can be assessed through
mean separations, taking into account geno-
type stability variances or sensitivities to
environmental changes, narrow inferences
can be predicted by BLUP of genotype
performance in specific environments that
include GE effects, even though not all
genotypes are evaluated in all environments,
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biplots to visualize interaction patterns can
be obtained from incomplete data and, by
running several mixed models with different
covariance structure, it is possible to obtain
sequential likelihood ratio tests or criteria
such as the AIC to do model selection; thus
the selection of stability and GE measures
will be more objective.

Issues concerning computation in mixed
models are no longer a true concern; many
statistical systems allow the fitting of com-
plex mixed models. Software is available
from the author as a set of statistical analysis
system (SAS) macros that use Proc Mixed,
which can fit any class of model described in
this chapter.

The literature on predicting genotype
effects at different plant-breeding stages
contains a bewildering variety of apparently
unrelated statistical procedures. A mixed-
model-based approach allows conceptual-
ization of the complex correlation structures
of plant-breeding data in terms of random
effects and underlying variance components.
It provides a unified strategy for analysing
data that facilitate the handling of gene-
tically and/or experimentally correlated
information, heterogeneous variances and
incomplete databases. Additionally, the
unified mixed-model framework gives the
prospect of incorporating useful breeding
measures in inference and offers statistical
tools for model selection. This chapter laid
out strategies under a mixed linear model
that can be used to analyse plant-breeding
data. The singular characteristics of each
stage in the breeding process demand differ-
ent statistical modelling strategies. BLUP is
discussed at two stages of a plant-breeding
programme, crossing-progeny tests (to pre-
dict cross performance of untested crosses in
the hybridization stage) and late-selection
stages or multi-environment yield trials
(to predict genotype performance and study
GEI).
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24 Defining Adaptation Strategies
and Yield-stability Targets
in Breeding Programmes
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Istituto Sperimentale per le Colture Foraggere, viale Piacenza 29, 26900 Lodi, Italy

Introduction

Genotype–environment (GE) interactions are
generally considered to be a hindrance to
crop improvement in a target region (Kang,
1998). Moreover, the GE interaction effects
may be added to environmental effects
in determining the temporal and spatial
instability of crop yields. Temporal stabil-
ity, in particular, negatively affects, farmers’
income and, for staple crops in developing
countries, contributes to food insecurity at
the national and household level. GE inter-
actions may also, however, offer opportuni-
ties, e.g. selecting and using genotypes that
show positive interaction with the location
and its prevailing environmental conditions
(exploitation of specific adaptation) or geno-
types characterized by low frequency of low
yields or crop failure (exploitation of yield
stability) (Simmonds, 1991; Ceccarelli,
1996; Annicchiarico, 2002).

The growing awareness of the impor-
tance of GE interactions has increased the
role of multi-environment, regional testing
for making cultivar recommendations or
in the final stages of selection among élite
breeding material. Analysing the GE inter-
action effects by proper techniques, rather
than ignoring them, is useful for explor-
ing the opportunities and/or limiting the
disadvantages that these effects present. The

information provided by these trials may
also help breeding programmes in: (i) gain-
ing a better understanding of the type and
size of GE interaction that can be expected in
a given region and the reasons underlying
its occurrence; and (ii) defining, if necessary,
a breeding strategy to cope successfully with
GE interactions. Decisions on adaptation
and yield-stability targets, genetic resources,
variety type, breeding plan and selection
procedures (selection environments, indi-
rect selection criteria, presence and extent
of participatory plant breeding, etc.) may
represent the components of this strategy
(Ceccarelli, 1996; Annicchiarico, 2002). In
particular, plant selection may be unique for
the target region (wide-adaptation strategy)
or specific for distinct areas of the region
(specific-adaptation strategy), whereas greater
yield stability may be considered or neglec-
ted as a target. There is a need for consis-
tency between the components of the breed-
ing target. For instance, the inconsistency of
a wide-adaptation prospect with the use of
genetic resources and selection procedures
generating material specifically adapted to
favourable environments has made partly
unsuccessful a number of breeding program-
mes carried out in the Green-Revolution
context (Simmonds, 1991; Ceccarelli, 1994).

The extensive application of genetic-
engineering techniques would not eliminate
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the need for breeding programmes to cope
with GE interactions, because hardly any
cultivar could possess genes conferring
superior performance in all environments
within a relatively large region. This derives
from genetically based trade-offs between
yield potential and tolerance to major
stresses, e.g. drought (Ludlow and Muchow,
1990), as well as from the need to choose
between incompatible levels of a key
adaptive trait, such as earliness of cycle
(Wallace et al., 1993). Also the possible
use of marker-assisted selection for yield
may require a preliminary definition of
an adaptation strategy and yield-stability
targets, because a substantial portion of
useful markers is environment-specific
(Paterson et al., 1991; Hayes et al., 1993).

Adaptation and Yield Stability

In an evolutionary biology context, adapta-
tion is a process, adaptedness is the level of
adaptation of the plant material to a given
environment and adaptability is the ability
to show good adaptedness in a wide range
of environments. In plant breeding, the first
two terms relate to a condition rather than a
process, designating the ability of the mate-
rial to be high-yielding in a given environ-
ment or in given conditions (to which it is
adapted) (Cooper and Byth, 1996). Breeding
for wide adaptation, i.e. adaptability, or for
specific adaptation means having as a goal
a variety that is well-performing in nearly
all environments or in a specific subset of
environments, respectively, within a target
region.

Various authors (e.g. Barah et al., 1981;
Lin and Binns, 1988) have applied the
adaptation concept only to consistency of
genotype performance in space, using the
yield-stability concept for consistency in
time. In fact, only repeatable genotype–
location (GL) interaction effects can be
exploited by selecting and growing specifi-
cally adapted genotypes. More generally,
adaptation as a workable concept for breed-
ers may conveniently be restricted to the
investigation of responses to locations, geo-
graphical areas, farming practices or other

aspects that can be controlled or predicted
prior to sowing. The knowledge of positive
GE interaction effects relative to genotype–
year (GY) or genotype–location–year (GLY)
interactions, as estimated by analysis of vari-
ance (ANOVA) models, cannot be exploited
in future years, because the climatic condi-
tions that generate year-to-year environmen-
tal variation are not known in advance. The
GLY interaction, expressing non-repeatable
GL interaction effects, represents the error
term for testing the significance of GL inter-
action under the usual assumption of year
as a random factor (independently of the
definition of genotype and location factors
as random or fixed) (Annicchiarico, 2002,
ch. 4). These models can be represented as
follows (omitting the possible block factor):

Rijkr = m + Gi + Lj + Yk + GLij +
GYik + LYjk + GLYijk + eijkr (24.1)

where Rijkr is the yield of the genotype i at
the location j, year k and plot r, m is the
grand mean and eijkr is the random error.
Likewise, GY interaction effects within
locations in the following ANOVA models,
holding the time factor random and nested
into location (particularly useful when loca-
tions differ for test years):

Rijkr = m + Gi + Lj + Yk (Lj) +
GLij + GYik (Lj) + eijkr (24.2)

cannot be exploited by specific adaptation
and they act as the error term for the GL
interaction (Annicchiarico, 2002, ch. 4)
(these GY effects include the GY and GLY
effects of the model in Equation 24.1).
The same view can hold when adaptation
focuses on genotype responses to environ-
mental factors. Material can be selected
with specific adaptation to environmental
conditions prevailing in a given area, pro-
vided that these conditions are not highly
variable between years. Focusing on GE
rather than GL effects for analysis of adapta-
tion may fail to provide the most useful
information. For instance, genotype varia-
tion in response to rainfall amount may
appear important when analysing GE inter-
action and negligible when analysing GL
interaction when test locations have similar
mean and large year-to-year variation for
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the environmental variable. The relatively
frequent assumption that GL interaction
and GY interaction within locations are
affected by the same environmental factors
within a given region is not supported by
data sets analysed by Lin and Binns (1988)
or Annicchiarico (2002, ch. 8), in which
no clear relationship emerges between wide
adaptation and yield stability of genotypes
in time. Concentrating on GL interaction
effects for analysis of adaptation offers
the additional advantage of simplifying the
analysis, because adaptation patterns that
are remarkably complex when evaluated
on a GE basis (requiring three or more
dimensions for a convenient multivariate
representation) become relatively simple
(requiring only one or two dimensions)
(Annicchiarico, 1997a).

Assessing the value of a specific-
adaptation strategy is of obvious interest for
the globally orientated breeding program-
mes of large seed companies or international
research centres, where the target region
may encompass a number of countries
and widely diversified environments. The
portion of the target region that is the object
of specific breeding, termed hereafter the
subregion, may include several countries
in this case. Specific adaptation, however,
may also prove a valuable target for national
breeding programmes, for which the yield
gain derived from exploitation of GL inter-
action effects within the country can help
withstand the increasing competition exerted
on local seed markets by international
seed companies. For public institutions, the
breeding of diversified, specifically adapted
germ-plasm can be a major element of a
research policy enforcing sustainable agri-
culture by: (i) maximizing the potential of
different areas by fitting cultivars to an
environment, instead of altering the envi-
ronment (by inputs, such as fertilizers,
water, pesticides, etc.) to fit widely adapted
cultivars; and (ii) safeguarding the bio-
diversity of cultivated material (Bramel-Cox
et al., 1991; Ceccarelli, 1996). This strategy,
which can also contribute to food security
for staple crops, may further enhance its
impact by integrating participatory breeding
schemes (McGuire et al., 1999). In any case,

specific adaptation may not imply a duplica-
tion of breeding stations and the relative
costs, because crossing and hybridization
operations could be centralized at a single
station that provides each subregion with
material on which local selection is
performed.

Subregions may be identified not only
within large and/or transnational regions
(e.g. DeLacy et al., 1994) but also within
relatively small regions, as suggested by
results from Syria (Ceccarelli, 1996), Italy
(Annicchiarico and Perenzin, 1994) and
northern Italy (Annicchiarico, 1992), New
South Wales (Seif et al., 1979; Basford
and Cooper, 1998), south-western Canada
(Saindon and Schaalje, 1993) and Ontario
(Yan et al., 2000). Some of these studies
also suggest that different subregions may
possess similar mean yield levels, although
specific breeding has mostly been envisaged
with regard to a high-yielding, favourable
area, on the one hand, and a low-yielding,
drought-prone or nutrient-deficient area, on
the other hand (Bramel-Cox et al., 1991;
Ceccarelli, 1994). Indeed, GL interaction
may also occur between unfavourable or
moderately favourable areas that differ for
the prevailing abiotic or biotic stress(es)
or for the pattern of one major stress
(Annicchiarico, 1997a; Basford and Cooper,
1998).

Repeatable GL interaction effects can
be either exploited by breeding specifically
adapted germ-plasm or minimized by
breeding widely adapted material. Also
the remaining GE interactions can be either
exploited by breeding material that tends to
maintain the yield constant across environ-
ments (i.e. responding relatively better in
unfavourable years) or minimized by breed-
ing genotypes with no marked deviation
from their expected mean in each environ-
ment (i.e. no GE interaction). These contrast-
ing features relate to two concepts of yield
stability, termed, respectively, static and
dynamic by Becker and Léon (1988) and
referred to as type 1 and type 2 by Lin et al.
(1986). Lin and Binns (1988) have defined a
type 4 concept of stability that is strictly
related to the former concept. The difference
is that type 4 relates to consistency of yield
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exclusively in time (across years or crop
cycles) within locations, rather than across
indefinite environments (belonging to the
same or different sites). The former concept
of stability (type 1 or type 4) is more useful
than the latter in a food-security context, and
the repeatability of its measures, on the
whole, tends to be somewhat higher (although
rarely high in absolute terms) (Brancourt-
Hulmel et al., 1997; Annicchiarico, 2002, ch.
7). Whatever the pursued concept and the
related measure of yield stability, the direct
selection for this trait requires many test
environments (at least eight to ten) because
of the high sampling error (Kang, 1998). The
choice of parental germ-plasm with recog-
nized yield stability and, if possible, that of a
convenient variety type can be important
elements of a breeding strategy in this
context (Becker and Léon, 1988; Brancourt-
Hulmel et al., 1997; Kang, 1998).

The practical interest of facilitating the
simultaneous selection for high mean yield
and high yield stability has led to the devel-
opment of the yield-reliability concept.
A reliable genotype is characterized by a
consistently high yield across environments
and/or cropping seasons. Different measures
of yield reliability are available that relate
to either concept of stability (Barah et al.,
1981; Eskridge, 1990; Kang and Pham, 1991;
Annicchiarico, 2002, ch. 7).

Analysis of Adaptation

Techniques for the analysis of adaptation
have mainly been developed for three objec-
tives: (i) defining an adaptation strategy for
breeding programmes; (ii) targeting geno-
types and/or making variety recommenda-
tions; and (iii) identifying optimal test or
selection locations. Different objectives may
coexist in the analysis of one data set, but
they may require partly different analytical
approaches. The first, in particular, focuses
on the responses of a set of genotypes to
generate predictions relative to future breed-
ing material that may be produced from the
genetic base, of which the tested genotypes
are assumed to be a representative sample.
Genotypes do not strictly need to be

randomly chosen (a group of carefully
chosen élite varieties or breeding lines
may well represent the genetic base of major
interest), but they should adequately repre-
sent the relevant germ-plasm types and/or
provenances for local breeding. The sample
of test locations (probably never fewer than
seven or eight) should be representative
of the pool of sites and relative variation
in environmental and agronomical factors
within the target region (Cooper and Ham-
mer, 1996). The adoption of a proportional
allocation criterion would imply that areas
of greater importance are more represented.
For annual crops, the trials should be
conducted for at least 2 years and, possibly,
3, in order to distinguish repeatable GL
interaction effects from non-repeatable
ones. Reports from various countries
(e.g. Annicchiarico and Perenzin, 1994;
Weber and Westermann, 1994; Sneller and
Dombek, 1995) have shown that a reliable
assessment of GL effects is hardly possible
from data of only 1 year, because the estima-
tion is inflated by non-repeatable effects.
For perennials, the repetition in time may
not be strictly needed. Results for lucerne in
Italy suggest that the variation in environ-
mental factors encountered by genotypes
across a 3-year crop cycle is wide enough
to act as a buffer against the occurrence
of sizeable non-repeatable GL interaction
effects (Annicchiarico, 1992).

Adaptation patterns relative to test loca-
tions are of limited interest per se, as the
sample of sites is necessarily very small rela-
tive to the target region. Moreover, specific
breeding can only be directed to areas, i.e. it
cannot realistically be so fine-tuned as to
exploit positive interaction effects of geno-
types with individual locations. However,
sites that are similar for the response of geno-
types can be grouped by different methods,
and each group may identify a cropping area
for specific breeding. Such areas have been
termed by different authors as subregions,
subzones, subareas, macroenvironments, or
mega-environments. Their definition is not
just geographical; it may encompass farming
practices as well (e.g. irrigated or rain-fed
cropping). Additional information on the
climatic, soil and biotic variables that
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are closely related to the occurrence of GL
interaction can help locate geographical
boundaries for subregions, besides contrib-
uting to our understanding of causal factors
for the interaction (Bidinger et al., 1996;
Annicchiarico, 2002). There are many ordi-
nation and classification techniques that
can jointly be useful for the zoning process
(DeLacy et al., 1996). The most popular and
simplest to apply and/or least demanding
of additional information are considered in
detail below.

Modelling of GLij effects for yield can be
attempted via the following techniques:

1. Joint regression model:

GLij = βiLj + dij

where βi is the genotype regression coeffi-
cient according to Perkins and Jinks’ model,
equal to (bi − 1) in Finlay and Wilkinson’s
model; Lj is the location main effect; and dij

is the deviation from the model, i.e. the
residual GL interaction (Becker and Léon,
1988).
2. AMMI model:

GLij = Σuinvjnln + dij

where uin and vjn are the eigenvectors
(scaled as unit vectors) of genotypes and
locations, respectively, and ln is the square
root of the eigenvalue, for n = 1, 2, . . .
N axes of a double-centred principal-
components (PC) analysis performed on the
matrix of GL effects (Gauch, 1992, ch. 3).
For trials repeated in time, testing of PC
axes can be done with respect to the appro-
priate error term for the GL interaction in
the ANOVA (Annicchiarico, 1997b).
3. Factorial regression model:

GLij = ΣβinXjn + dij

where βin is the genotype regression co-
efficient for the environmental covariate
n and Xjn is the effect of the covariate for
the location. The equation may also be
expressed as a function of the site value of
the covariate (Piepho et al., 1998). Again,
testing of individual components of the GL
interaction can be performed with respect
to the appropriate error term for this inter-
action in the ANOVA.

For model comparison, both efficacy
(high proportion of GL interaction sum of
squares) and parsimony (low number of GL
interaction degrees of freedom) are impor-
tant (Gauch, 1992, ch. 4). These features
can be combined into a unique evaluation
criterion equal to the sum of the estimated
variances of the significant components of
the GL interaction (Annicchiarico, 2002, ch.
5). For instance, an additive main effects and
multiplicative interaction (AMMI) model
with two significant PC axes (AMMI-2) out-
performs the joint regression model if the
sum of the variances of the two PC axes is
higher than the variance of the heterogeneity
of genotype regression component. An alter-
native criterion for model assessment has
been proposed by Brancourt-Hulmel et al.
(1997).

Modelling of GL effects is just a step of
the analysis, which, in the current context,
should be followed by classification of
locations based on their similarity for GL
interaction effects. Various methods based
on hierarchical cluster analysis have been
proposed in this respect, among which
Ward’s incremental sum of squares and
average linkage (with a squared Euclidean
distance as the dissimilarity measure) are
generally recommended (DeLacy et al.,
1996). When used in combination with
AMMI analysis, the performance of cluster
analysis on the significant GL interaction PC
scores of locations (e.g. Annicchiarico, 1992)
has the advantage of retaining only the ‘pat-
tern’ portion of the GL interaction variation
in the assessment of site similarity, since the
‘noise’ portion is excluded from the model
(Gauch, 1992, ch. 4). Cluster analysis can be
performed on mean yields of locations when
combined with joint regression and on site
mean values of the significant environmen-
tal covariates when combined with factorial
regression. In the latter case, covariates may
be assigned a weight in proportion to their
importance as estimated from the partial
regression sum of squares in the model
(Annicchiarico, 2002, ch. 5). The lack of
significant GL interaction within groups of
locations, verified by a separate ANOVA at
each clustering stage, may provide a simple
truncation criterion for definition of groups
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(Ghaderi et al., 1980). An alternative crite-
rion for site classification has been proposed
by Singh et al. (1999) in the framework of
joint regression analysis. It contemplates
the estimation of the value of site mean
yield for which crossover interactions (i.e.
changes in ranks) between genotypes reach
the highest frequency. This main crossover
point serves as a cut-off for defining two
groups of locations. The same approach has
been extended by Annicchiarico (2002,
ch. 5) to the estimation of the main crossover
point in AMMI-1 models, in which nominal
yields of genotypes (i.e. yields from which
the location main effect has been removed)
can be expressed as a function of the site
score on the first GL interaction PC axis
(Gauch and Zobel, 1997), as well as in facto-
rial regression models including only one
covariate. Relative to cluster analysis, this
approach can identify only two groups of
locations, and it cannot be applied when
adaptation patterns require a multidimen-
sional description.

One further method for location classifi-
cation is represented by pattern analysis
(DeLacy et al., 1996), which, for trials
repeated also in time, implies the applica-
tion of a hierarchical cluster analysis on
genotype yields averaged across time at each
location and preliminarily standardized
(subtracting location mean, and dividing
by location standard deviation of genotype
values). The use of Ward’s method allows for
the classification of locations into groups
that reflect the opportunities to exploit indi-
rect selection among locations (Cooper et al.,
1996). The method is usually complemented
by  an  ordination  technique  based  on  PC
analysis or principal coordinates analysis
(DeLacy et al., 1996) and may include the
modelling of genotype standardized yields.
Compared with other methods, pattern
analysis is more suitable for application to
largely unbalanced data sets (e.g. DeLacy
et al., 1994), but there is no attempt to sepa-
rate pattern from noise in GL effects prior to
classification of locations. Other techniques,
such as canonical variates analysis (Seif
et al., 1979) and the shifted multiplicative
model (Cornelius et al., 1992), can also be
used for site classification.

Groups of locations represent provi-
sional subregions in breeding for specific
adaptation. Also the analysis of adaptation
aimed at targeting/recommendation of geno-
types may contemplate the definition of
subregions (Gauch and Zobel, 1997; Annic-
chiarico, 2002, ch. 5). However, that use of
the analysis differs from the current one in at
least two major aspects. First, the relevant
GL interaction effects in that context are
those of the crossover type between top-
ranking genotypes, each subregion grouping
the sites with the same best-yielding geno-
type(s). Conversely, any GL effect relating
to lack of genetic correlation between loca-
tions, i.e. not resulting from heterogeneity of
genotypic variance between sites (Cooper
et al., 1996), is relevant for the current
assessment of site similarity. Secondly, large
heterogeneity of genotypic variance between
locations may represent a problem only in
the current context. The heterogeneity may
arise from the aforementioned main cross-
over point for genotype adaptive responses,
as well as from the trend of yield differences
between genotypes to increase in increasing
the site mean yield (Yau, 1991). While the
former is intrinsic to the adaptation patterns
and can be accepted (also in view of its
potential usefulness for definition of sub-
regions), the latter should be corrected
because: (i) it introduces unwanted GL inter-
action pattern as a result of a scale effect that
implies no change of relative merit between
genotypes; and (ii) it causes cluster analysis
results also to be affected by the main effect
of locations (Fox and Rosielle, 1982; Annic-
chiarico, 2002, ch. 5). A convenient correc-
tion may be suggested by the regression of
the within-location phenotypic variance
of genotype mean yields (sp

2) on the mean
yield of locations (mloc), with both terms
expressed on a logarithmic scale. A regres-
sion slope b ≈ 2 (implying the relationship:
sp ≈ k mloc) supports a logarithmic transfor-
mation of plot yield data; b ≈ 1 (implying the
relationship: sp

2 ≈ k mloc) supports a square-
root transformation; and b ≈ 0 (implying no
relationship of sp

2 with mloc) discourages any
transformation. Inspection of various data
sets suggests that the transformation may
be needed only in the presence of wide
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variation in location mean yield and, when
needed, it tends to stabilize experiment
error variances as well (Annicchiarico, 2002,
ch. 5). In particular, the transformation is
required for the data set from Algeria, which
is considered hereafter as the first case-study
(b = 1.92, P ≤ 0.01), whereas it is unneces-
sary for several data sets from Italy. The data
transformation can be of interest for joint
regression, factorial regression and AMMI
analysis techniques. For pattern analysis,
the adopted data standardization within
sites removes any heterogeneity of genotypic
variance, including that originating from the
main crossover point. This feature makes the
modelling of genotype adaptation patterns
less accurate by this technique (McLaren,
1996; Annicchiarico, 2002, ch. 5), which is
a possible limitation when the analysis is
aimed at targeting/recommending genotypes.

An Analytical Flow Chart

The main analytical steps involved in
the definition of an adaptation strategy and
yield-stability targets on the basis of yield
trials repeated also in time are summarized
in Fig. 24.1. There are six different, major
conclusions that can be reached, implying
a wide-adaptation or a specific-adaptation
strategy and, in both cases, the inclusion or
exclusion of increased yield stability as a
target. Within the wide-adaptation strategy,
indications may or may not urge the choice
of selection locations that contrast for GL
interaction effects.

At first, it is useful to estimate the vari-
ance components for genotype, GE inter-
action across environments (as location–
year or location–crop-cycle combinations)
and the two determinants of the GE inter-
action variance, i.e. the lack of genetic corre-
lation among genotype values and the heter-
ogeneity of genotypic variance, as described
by Cooper et al. (1996). The latter determi-
nant relates to both GL and other GE effects
that originate from a scale effect of the envi-
ronment and inflate the estimated genotypic
variation for adaptation pattern and yield
stability, respectively. The larger size of this
variance component relative to the former

suggests its reduction through a suitable data
transformation, as outlined, in particular, in
respect of analysis of adaptation. In any case,
the low size of the lack of genetic correlation
component (say, less than 25–30%) relative
to the genotypic variance reveals the limited
extent of GE interaction effects relevant
to breeding and supports, without further
analyses, the selection for wide adaptation
with no regard for yield stability (Fig. 24.1).
Otherwise, different genotypic and genotype–
environmental components of variance can
be estimated through the models in Equa-
tions 24.1 or 24.2 of ANOVA. An analysis of
adaptation is not justified if the GL inter-
action variance is low (e.g. less than 30%
relative to the genotypic variance; Fig. 24.1).

Following an appropriate modelling
of GL effects and/or the site classification
based on similarity for these effects, sub-
regions are provisionally identified that
should lend themselves to a practical defini-
tion on a geographical basis and/or accord-
ing to farming practices. Those that cannot
be characterized as distinct from each other
can be merged at this stage. Likewise, sub-
regions that are too small to be of practical
interest can be merged with larger ones. The
availability of a geographical information
system for major environmental variables
can facilitate the characterization of sub-
regions and the possible up-scaling of results
both spatially (in relation to non-test sites)
and temporally (in relation to long-term
values of environmental data). Some proce-
dures of possible interest in this context are
described by Annicchiarico (2002, ch. 5).

Wide- vs. specific-adaptation strategies
can be compared in terms of yield gains
predicted on the basis of selection theory
applied to the same yield data, as described
in the following section. If there are several
candidate subregions, specific adaptation
may contemplate other possibilities besides
targeting each subregion (e.g. merging of some
subregions; neglecting some subregion of
minor importance; etc.). The assessment is
strictly valid only for materials, and under
conditions, similar to those of the data set.
A final decision on the adaptation strategy
may be made at this stage or, especially
in the absence of clear-cut indications, be
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postponed to further research comparing the
best options on the basis of actual yield gains
(e.g. Ceccarelli et al., 1998).

A wide-adaptation strategy may arise
from two events, i.e. small GL interaction, or
sizeable GL interaction but no clear advan-
tage of specific breeding (Fig. 24.1). In the
latter case, selection should be conducted
across contrasting sites capable of reproduc-
ing the GL interaction effects and, thereby,
the genotype mean responses across the
target region. The provisional identification
of subregions helps locate these locations,
representative of different subregions and
usable for parallel selection of material (Lin
and Butler, 1988; Cooper et al., 1996). Early
stages of selection can ideally be devised
at the site that reproduces with greatest
accuracy the genotypic mean responses over
the region (wide-adaptation prospect) or the
subregion (specific prospect), maximizing
the relative yield gain predicted on the basis
of indirect selection theory (Cooper et al.,
1996). However, evaluation of selection
locations based on just a few test years may
be largely biased by unusually high or low
within-site GY interaction and experimental
error values.

The selection for wide or specific adap-
tation may also be attempted through artifi-
cial and/or managed selection environments
capable of reproducing genotype responses
across the target region, as shown by Cooper
et al. (1995) and Annicchiarico and Mariani
(1996) for wheat, and in the current, second,
case-study for lucerne.

Decisions on the yield-stability issue
depend essentially on the size of other GE
interaction variance components (Fig. 24.1).
Breeding for yield stability is probably justi-
fied only when the overall estimated vari-
ance of the relevant effects (for annual crops,
either GY and GLY interactions, according
to the ANOVA model in Equation 24.1, or
average GY interaction within locations,
according to the model in Equation 24.2)
is large relative to the genotypic variance
(say, 150–200%). In the specific-adaptation
scenario, the indications may differ depend-
ing on the subregion, suggesting yield stabil-
ity as a target in some cases only. Selection

for yield stability requires in all cases a
higher number of selection environments
(Fig. 24.1) and the definition of the concept
of stability to breed for.

Comparison of Adaptation Strategies

Breeding for specific adaptation tends to
imply greater genetic gains, as well as
greater costs. The genetic gains derive from
exploitation of GL interaction effects via
useful adaptive traits (Bidinger et al., 1996),
as well as increased heritability of yield as
a consequence of decreased GL interaction
(Kang, 1998). The greater costs may be due
to increased field testing rather than to
duplication of breeding stations, since a
single station could provide each subregion
with novel germ-plasm. Under this scenario,
a comparison of wide vs. specific adapta-
tion that does not imply substantial differ-
ences in costs can be made on the basis
of predicted yield gains obtained from the
same number of selection environments (as
in location–year combinations for annual
crops: e.g. four sites by 2 years = eight envi-
ronments, in a wide context, and two sites
by 2 years = four environments for each of
two subregions, in a specific context). The
gain from wide adaptation is not necessarily
lower in this case, because more environ-
ments allow for greater precision in the
estimation of genotypic values (mainly
in relation to random variation due to GE
interactions). The use of selection theory
for prediction of yield gains obtained from
selection of genotypes is envisaged here
for comparison of selection strategies for
relative merit, rather than estimation of
actual selection gains that can be expected.
The latter use is inappropriate, unless
the multi-environment testing relates to a
random sample of élite breeding lines (as
may be the case for self-pollinated species).

In general, the mean predicted yield
gain across E environments can be estimated
as (Falconer, 1989, ch. 11; Cooper et al.,
1996):

∆G = i h2 sp (24.3)
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where i = standardized selection differen-
tial, h2 = estimated broad-sense heritability
on a genotype mean basis, and sp = square
root of the estimated phenotypic variance
across environments. In particular:

h2 = sg
2/[sg

2 + (sge
2/E) + (se

2/E R)] (24.4)

where sg
2, sge

2 and se
2 are estimates of the

components of variance for genotype, GE
interaction and pooled error, respectively,
and R = number of replicates. The sp term is
equal to the square root of the denominator
in Equation 24.4. In the following formulae,
h2 values for prediction of yield gains are
computed from components of variance
estimated from ANOVAs including test
environments of all locations or their sub-
sets, whereas E and R values are set by the
user as hypothesized for the selection work.
E, in particular, is usually different from
that of the data set. R and i are set to con-
stant values in the assessment. Hereafter, EA

and EB represent the number of selection
environments for two subregions A and
B, respectively, in a specific-adaptation
scenario, whereas EAB = EA + EB represents
the number of selection environments used,
in a wide-adaptation scenario, for parallel
selection across the subregions. PA and PB

represent the proportion of the target region
that is occupied by the subregions A and B,
respectively, with PA + PB = 1. The propor-
tion relates to the cropping area of each
subregion (as indicated by the number of
test locations assigned to subregions in
the analysis of adaptation or, possibly, by
the relative size of subregions following the
spatial and temporal up-scaling of results).
The relative number of selection environ-
ments for each subregion should be roughly
proportional to the relative extent of the
subregion (e.g. if EAB = 6 and PA = 0.64, then
EA = 4 = two sites by 2 years, and EB = 2 =
one site by 2 years). An exact match
between proportion of selection environ-
ments and P value for each subregion
in parallel selection for wide adaptation
could be obtained by a weighted selection
procedure that down-weights the contri-
bution of environments that are over-
represented, and vice versa (Podlich et al.,
1999). The average predicted gain (per

unit area) provided by a wide-adaptation
strategy is:

∆GW = i hAB
2 sp(AB) (24.5)

where hAB
2 and sp(AB) are obtained from

Equation 24.4 after estimating the com-
ponents of variance from the combined
ANOVA including all test environments,
and inserting EAB and R values as appropri-
ate in the formula. The average predicted
yield gain over the target region provided by
breeding for specific adaptation (∆GS) arises
from a weighted mean of the gains ∆GA and
∆GB predicted for the subregions A and B,
respectively:

∆GA = i hA
2 sp(A) (24.6)

∆GB = i hB
2 sp(B) (24.7)

∆GS = [(∆GA PA) + (∆GB PB)]/(PA +
PB) = (∆GA PA) + (∆GB PB) (24.8)

where heritability and phenotypic variance
values are obtained from Equation 24.4
after estimating the components of variance
from the combined ANOVA, including only
environments of the test locations grouped
in subregion A (values hA

2 and sp(A)) or B
(hB

2 and sp(B)), and inserting EA or EB and R
values in the same equation as appropriate.
The same procedure described for two sub-
regions can easily be extended to the case
of three or more subregions, comparing pre-
dicted yield gains over the region in a wide-
adaptation scenario with those obtained
from specific selection for each subregion.

In fact, a third scenario may also be
envisaged for two subregions, which con-
templates selection in only one subregion,
so that yield gains in the other derive from
correlated responses in an indirect selection
context (Falconer, 1989, ch. 19; Cooper et al.,
1996). The predicted yield gain in subregion
B deriving from indirect selection in sub-
region A is:

∆GB/A = i hA hB rg(AB) sp(B) (24.9)

where hA and hB are square roots of broad-
sense heritability values for each subregion
previously estimated, together with sp(B),
through Equation 24.4; and rg(AB) is the
genetic correlation coefficient for geno-
type yields between the subregions. The
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predicted yield gain from direct selection in
subregion A can be computed by Equation
24.6. However, the comparison with the
other scenarios on the basis of the same
number of selection environments suggests
a modification of the current computation
of hA

2 and sp(A) values used for estimation
of ∆GA, because all selection environments
would be attributed to subregion A for
direct selection now. For instance, if EA = 4
and EB = 2 in previous formulae for direct
selection in each subregion, EA = 4 + 2 = six
environments assigned to subregion A and
hence used for estimation of hA

2 and its
introduction in Equation 24.6 in the present
context. The mean predicted gain over the
region provided by breeding only for sub-
region A arises from a weighted mean of
the gains ∆GA and ∆GB/A predicted for the
subregions A and B, respectively:

[(∆GA PA) + (∆GB/A PB)]/(PA + PB) =
(∆GA PA) + (∆GB/A PB) (24.10)

Extending the case of two environments to
two subregions (Burdon, 1977), an estimate
of rg(AB) in Equation 24.9 can be provided by
the following formula:

rg(AB) = rp(AB)/(hA′ hB′) (24.11)

where rp(AB) is the phenotypic correlation
coefficient between subregions for genotype
yields (averaged across environments in each
subregion), and hA′ and hB′ are square roots
of the broad-sense heritability on a geno-
type mean basis estimated for subregions A
and B, respectively. The difference of hA′
and hB′ from previous estimates (hA and hB)
lies in the fact that E and R in Equation 24.4
are the actual numbers of test environments
per subregion and experiment replicates,
respectively, in the analysed data set.

Other, more complex scenarios may be
assessed by a combination of the above pro-
cedures. For instance, direct selection could
be devised specifically for two subregions,
in either of which indirect selection is also
performed for a third subregion.

The comparison between adaptation
strategies based on predicted yield gains
tends to underestimate the possible advan-
tage of a specific prospect, when the

material with markedly specific adaptation
is underrepresented among the tested variet-
ies or breeding lines for various reasons (e.g.
previous selection for wide adaptation by
local breeding; large representation in the
sample of foreign, widely adapted material).
Likewise, the potential gain of specific
breeding for unfavourable areas may be
underestimated when most tested genotypes
have been selected in favourable environ-
ments. Especially in these cases, the results
can be exploited for definition of the most
promising specific-adaptation scenario to be
compared with wide adaptation on the basis
of actual yield gains.

The advantage of specific adaptation
may be even greater if it also implies the
utilization of a distinct genetic base for each
subregion. For public breeding programmes,
an additional advantage of specific breeding
that is difficult to quantify is its contribution
to the stability of production by increasing
the number of varieties and, hence, the bio-
diversity of the material under cultivation
(Ceccarelli, 1996).

Case-study 1: Durum Wheat in Algeria

In the framework of a bilateral cooperation
project between the governments of Algeria
and Italy, carried out by the Institut Tech-
nique des Grandes Cultures of Algeria and
the Istituto Agronomico per l’Oltremare of
Italy, 24 durum wheat cultivars were grown
for 2 years at 17 Algerian locations for:
(i) optimizing, for this fundamental staple
crop, the variety recommendation across
the country; and (ii) supporting the
decisions on adaptation and yield-stability
targets of the national breeding programme.
Based on results published elsewhere
(Annicchiarico et al., 2002), the present
study makes a comparison of various ana-
lytical methods used for definition of subre-
gions and the relative yield gains predicted
for each specific-adaptation scenario rela-
tive to wide adaptation. It is assumed that
a valuable method can identify subregions
that offer the best opportunity for a specific-
adaptation strategy.
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The estimated lack of genetic correla-
tion component of variance proved about as
large as the genotypic variance, justifying
further analyses (Fig. 24.1). This component
accounted for a lower portion (43%) of the
GE interaction variance than the heterogene-
ity of genotypic variance component (57%),
suggesting the need for transforming data.
The aforementioned criterion, based on the
relationship between variation in genotype
mean values and mean yield of locations,
supported the adoption of a logarithmic
transformation, which, indeed, substantially
reduced the proportion of GE interaction
variance accounted for by the heterogeneity
of genotypic variance component (34%).
The compared methods differ in the type
of analysed data (original or transformed),
the adopted technique for modelling of GL
effects and the criterion for grouping of sites
(Table 24.1). The assessment was limited to
the scenario with two subregions because
this is the only one compatible with the

main crossover criterion for location classifi-
cation. Joint regression, factorial regression
and the AMMI-1 model proved adequate in
all cases for original and transformed data,
as indicated by the lack of significance of
the residual GL interaction term (data not
shown). The estimation of predicted gains
relied upon the hypothesis of six selection
environments (three sites by 2 years). Addi-
tional hypotheses are reported in Table 24.1.

Only two methods provided the same
grouping of locations (those based on joint
regression analysis of transformed data). The
estimated gain from specific adaptation rela-
tive to wide adaptation ranged from −9.7%
to +4.0%, depending on the method (Table
24.1). On the whole, the results suggest:
(i) the usefulness of the logarithmic transfor-
mation of data and the criterion underlying
its adoption; (ii) no consistent advantage
of cluster analysis over the main crossover
criterion; and (iii) the superiority of two
methods, i.e. pattern analysis, and AMMI
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Analytical methoda Subregion Ab Subregion Bb

Data Model
Grouping
of sites PA EA

∆GA

(t ha−1) PB EB

∆GB

(t ha−1)
∆GS

(t ha−1)
∆GS/∆GW

ratio (%)c

Original
Original
Original
Original
Original
Original
Log10-transformed
Log10-transformed
Log10-transformed
Log10-transformed
Log10-transformed
Log10-transformed
Standardized

JR
JR
AMMI
AMMI
FR
FR
JR
JR
AMMI
AMMI
FR
FR
PA

CA
CP
CA
CP
CA–nw
CA–w
CA
CP
CA
CP
CA
CP
CA

0.71
0.18
0.82
0.12
0.71
0.71
0.23
0.23
0.41
0.23
0.65
0.18
0.41

4
2
4
2
4
4
2
2
2
2
4
2
2

0.178
0.108
0.179
0.115
0.170
0.191
0.081
0.081
0.118
0.117
0.149
0.155
0.125

0.29
0.82
0.18
0.88
0.29
0.29
0.77
0.77
0.59
0.77
0.35
0.82
0.59

2
4
2
4
2
2
4
4
4
4
2
4
4

0.498
0.319
0.843
0.311
0.507
0.448
0.353
0.353
0.440
0.352
0.514
0.328
0.437

0.271
0.281
0.298
0.288
0.268
0.266
0.291
0.291
0.308
0.298
0.277
0.297
0.309

91.1
94.6

100.4
96.9
90.3
89.6
97.9
97.9

103.7
100.2
93.3

100.0
104.0

aJR = joint regression; AMMI = model with one GL interaction PC axis; FR = factorial regression holding
as environmental variables winter mean temperature alone (transformed data) or with annual rainfall
(original data). CA = cluster analysis (-nw = not weighted, and -w = weighted, environmental covariates
in the FR-based approach); CP = main crossover point.
bP = proportion of the target region; E = number of selection environments; and ∆G = predicted yield gain
per selection cycle (four experiment replicates; selection intensity = 10%, applied to 20 élite breeding
lines).
c∆GW = 0.297 t ha−1, from selection in E = EA + EB = six environments.

Table 24.1. Comparison of analytical methods for definition of two subregions for durum-wheat breed-
ing in Algeria. Predicted yield gain over the region from a specific-adaptation strategy (∆GS) relative to
wide adaptation (∆GW) (analysis on data from Annicchiarico et al., 2002).



analysis of transformed data complemented
by cluster analysis. The subregion definition
by these methods was very similar. With
reference to Fig. 24.2, the indications dif-
fered only for locations 7 and 14 (attributed
to subregions A and B, respectively, by the
former method and to subregions B and A,
respectively, by the latter). These sites may
represent a transitional zone separating
the high-elevation, cold- and drought-
prone subregion A from the warmer, partly
drought-prone subregion B. While site
mean yield is mainly associated with rainfall
amount, GL interaction and genotype adap-
tive responses relate mainly to winter cold
(Annicchiarico et al., 2002), just as for bread
and durum wheat in Italy (Annicchiarico,
1997a), because of the importance of an
appropriate matching of genotype phen-
ology with the level and extent of cold stress
in winter.

In this case, the relative advantage pre-
dicted for the specific-adaptation strategy
was probably underestimated by the fact
that most tested cultivars (15 out of 24)
are modern varieties bred at international
research centres or in south European
countries and, as such, selected for wide
adaptation and/or adaptation to areas quite
different from Algerian ones, especially the
stressful subregion A. The present definition
of subregions could conveniently be used
for extending the comparison of adaptation
strategies to actual yield gains obtained from
selection of breeding lines within and across
the subregions.

Case-study 2: Lucerne in Northern Italy

In an earlier study (Annicchiarico, 1992),
adaptation patterns of 11 lucerne (Medicago
sativa L.) cultivars across 12 sites of northern
Italy were modelled by AMMI analysis and
joint regression. The former model was largely
more adequate than the latter and, in combi-
nation with cluster analysis, allowed for the
classification of lowland test sites into three
subregions (Fig. 24.3). After eliminating two
mountain locations that had clustered alone
and were related to GL interaction variation
on a second PC axis, adaptation patterns
could conveniently be represented on a uni-
dimensional basis by an AMMI-1 model.
This is shown in Fig. 24.4a in respect
of best-performing material, together with
results of site classification producing the
three subregions. Subregions A and C are
sharply in contrast in relative responses of
varieties, whereas subregion B is somewhat
intermediate in adaptive responses (Fig.
24.4a) and geographically (Fig. 24.3). The
site score on the first PC axis was correlated
positively with soil clay content and nega-
tively with summer water received by the
crop (Annicchiarico, 1992). Subregion A is
mostly characterized by sandy-loam soils,
higher rainfall and/or irrigated cropping of
lucerne; subregion C by clay soils, some-
what lower rainfall, and rainfed cropping;
and subregion B by intermediate features.

A second study (Annicchiarico, 2000)
was based on a novel set of trials, including
partly different cultivars and test locations.
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Fig. 24.2. Geographical position of test locations for durum wheat in Algeria, and definition of two
subregions for a specific adaptation strategy based on pattern analysis and AMMI + cluster analysis results
(analysis on data in Annicchiarico et al., 2001).



Its results, partly summarized in Fig. 24.4b,
showed that: (i) adaptation patterns across
the region are largely repeatable; and (ii)
the classification of locations is consistent
with the previous definition of subregions
(Fig. 24.3), which is therefore also useful in
relation to other germ-plasm and locations
in the region.

Based on data of the first study, wide-
vs. specific-adaptation strategies were com-
pared for predicted yield gains deriving
from selection of populations (Table 24.2).
Scenarios contemplated either one selection
location per subregion or one for each of
the contrasting subregions A and C. In the
latter case, yield gains for subregion B in a
specific-adaptation prospect resulted from
selection in the subregion that could maxi-
mize the indirect selection gain, namely,
subregion A. Selection for specific adapta-
tion to three or two subregions was estimated
to be at least six times more effective than
selection for wide adaptation. The present
comparison relative to selection of popula-
tions is, however, rather out of the context
of selection schemes for open-pollinated
populations, in which selection is basically
performed on individual plants. Therefore,
its conclusions should be taken with caution
and validated for actual yield gains relative
to phenotypic or genotypic selection.

The breeding station in Lodi, correspond-
ing to the coded site ‘k’ in Fig. 24.3, is placed
in subregion A. Therefore, selection at this
site (implying irrigation) is expected to pro-
duce material with specific adaptation to
this subregion (like, for instance, the variety
‘Equipe’ in Fig. 24.4b). As a public breeding
programme for the region, widening the
adaptation of our varieties and/or also pro-
ducing varieties adapted to subregion C are
highly desirable objectives, which are, how-
ever, hindered by the cost of additional selec-
tion sites. Therefore, an attempt has been
made to reproduce at Lodi in artificial envi-
ronments the adaptation patterns occurring
across the lowland locations of the region.
Based on previous information on relevant
environment variables, the variation among
test locations along the first PC axis of Fig.
24.4a,b  was  reproduced  by  four  artificial
environments created by the factorial combi-
nation of type of soil (sandy loam or clay) and
level of drought stress in summer (limited;
high). Local sandy-loam soil, or clay soil
imported from subregion C, filled large (24.0 m
× 1.6 m × 0.8 m deep), bottomless containers
in concrete laid in a field. Irrigated or rain-
fed cropping during an ordinary summer
season were simulated in each environment
by irrigation under rain-shelter equipment.
Results of the AMMI analysis of the GE
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Fig. 24.3. Geographical position of test locations for lucerne in northern Italy, and definition of three
subregions for a specific adaptation strategy based on AMMI + cluster analysis results (from Annicchiarico,
1992, 2000).



interaction are illustrated in Fig. 24.4c for a
set of ‘probe’ varieties of known adaptation
and a subset of farm landraces that were also
included in the experiment. The responses

of the varieties from the no-stress/sandy-
loam soil environment (simulating sub-
region A) through the stress/clay soil envi-
ronment (simulating subregion C) agreed
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Fig. 24.4. Nominal yields of best-performing lucerne varieties as a function of the score on the first GL
interaction principal-component (PC) axis of test locations (graphs a and b) or the first GE interaction PC
axis of artificial environments (graph c), and location classification based on cluster analysis of site PC
scores (see Fig. 24.3 for geographical position of locations).



well with the responses across the region
reported in Fig. 24.4a,b. Landraces ‘10’, ‘8’
and ‘3’, originating in subregions A, B and C,
respectively, showed responses consistent
with their respective subregion of origin,
highlighting the role of evolutionary adapta-
tion in this context. The ordination of
environments along the PC axis suggested
that the drought-stress level has a greater
impact on the occurrence of GE interaction
than soil type. These artificial environments
may allow for the adoption of a wide- or
a specific-adaptation strategy. Work is in
progress for comparing these strategies in
terms of actual yield gains obtained from
phenotypic plant selection, as well as for
elucidating the morphophysiological traits
contributing to the adaptive responses.

Conclusions

Most breeding programmes have devoted a
limited effort to investigation of GE interac-
tions and their possible implications, despite
the apparently considerable importance of
the issue, the frequently large investment
by public and private institutions in multi-
environment testing and the ever-growing

number of statistical methods proposed
for this target (Cooper and Byth, 1996).
A substantial inversion of this trend can
be expected to occur in so far as ordinary
breeders are increasingly being sought as
the main users of these methods (also
through the availability of user-friendly
and inexpensive software), the analyses are
finalized to answer practical, crucial ques-
tions concerning adaptation strategies and
yield-stability targets and, most of all, the
documented application of results of these
analyses to breeding programmes provides
increasing evidence of their contribution to
the attainment of higher and more stable
crop yields.
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Adaptation
strategy

Selection within
subregion E P h2 sp

∆G (t ha−1) for
subregions

∆G (t ha−1) over
the region

∆GS/∆GW

ratio (%)

Specific
Subregion A
Subregion B
Subregion C

Wide

–
Direct
Direct
Direct
–

3
1
1
1
3

–
0.250
0.375
0.375

–

–
0.72
0.48
0.77
0.18

–
3.13
1.79
2.75
1.55

–
3.70
1.43
3.49

–

2.77
–
–
–

0.46

605
–
–
–
–

Specific
Subregion A
Subregion B
Subregion C

Wide

–
Direct
Indirect (from A)
Direct
–

2
1
0
1
2

–
0.250
0.375
0.375

–

–
0.72
0.48
0.77
0.13

–
3.13
1.79
2.75
1.84

–
3.70
0.80
3.49

–

2.53
–
–
–

0.39

650
–
–
–
–

E, number of selection environments; P, proportion of the target region; h2, broad-sense heritability on
a population mean basis; sp, phenotypic standard deviation, estimated for E environments and four
experiment replicates; ∆G, predicted yield gain (over a 3-year crop cycle) per selection cycle (selection
intensity = 10%, applied to 20 élite populations). Estimated genetic correlations for subregion B are:
rg = 0.46 with subregion A, rg = −0.11 with subregion C.

Table 24.2. Predicted yield gain over the lowland northern Italy region from selection of lucerne
populations specifically adapted to three or two subregions relative to selection for wide adaptation
(∆GS/∆GW ratio) (analysis on data by Annicchiarico, 1992; see Fig. 24.3 for subregion definition).
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Nitrogen-assimilation genes 275
Nitrogen-uptake genes 275
Nitrogen-use efficiency xiv, xv, 269–272, 274,

276, 279, 280
in cereals, mechanisms of improved 269

Non-additive gene action 118
Non-additive–environment interaction 156, 159
Non-additivity 306
Non-concurrence 306
Non-crossover

interaction 221, 222, 305, 308–311,
313–317

solution 312
Non-disjunction 11, 12
Non-governmental organization 236
Non-nuclear inheritance 13
Non-parametric methods of Hühn 230
Non-repeatable GEI 290
Nonsense codons 16
Normal distribution 123
NPT see New plant type of rice
NR gene expression 278
NR inhibitors 279
NR transcripts 278
Nuclear divisions 10
Nuclein 7
Nucleotide

alignment 35
sequences 35
sequencing 15

NUE see Nitrogen-use efficiency
NUE terminology 270
NUE, genetic improvement for 272
Nullisomic lines 52
Nutrient uptake efficiency 270
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O. brachyantha 201
O. meyeriana 201
O. redleyi 201
O. schlechteri 201
Officinalis complex 200, 201
Oligonucleotide arrays 41
Oligonucleotides 96
Onion 192
Open reading frames 15, 26, 36

functions of 26
Optimal population size 137
Ordinal QTL analysis 115
ORFs see Open reading frames
Organic acid metabolism genes 275
Organogenesis 191
Orthologous

QTL 114
sequences 40

Oryza
brachyantha 200
schlechteri 200
spp., chromosome number of 198, 199

Osmotic adjustment 90, 161, 179, 180
Osmotic potential 91
Osmoticum 272, 275
Outcrossing ability 121
Ovary abortion 173
Overall variety means, prediction of 332
Overdominance 76
Overlapping generations 28
Oxidative

damage to DNA 278
pentose phosphate pathway 277
stress, effects of 228

Ozone layer, damage to 274

Pachytene chromosomes of Lilium 15
Pairwise sequence alignment 34, 35, 40
Paralogous QTL 114
Parametric bootstrap 319
Parent selection 73, 75
Parental choice in hybrid breeding 74
Part-chromosome substitutions 49, 50
Partial chromosome-substitution lines 114
Partial correlation coefficients 329
Participatory plant breeding 236, 365, 367
Path coefficient analysis for GEI 226
Pattern analysis 230, 370, 371, 376, 377
PC axis 380
PC1 293, 294, 301
PC2 293, 294, 301
PC3 301
PC4 301
PC5 301
PC6 301
PCA see Principal component analysis
PCR

analysis 206
primers, semi-arbitrary pair of 40

PCR-based techniques 125
Pea

linkage groups 2

segregation for wrinkled and smooth seeds
1, 2

Pedigree selection 151
Peroxynitrate 278
Pharmaceuticals 194
Pharmacogenomics 46
Phenology 161, 179, 180, 377
Phenotypic

marker 89
selection 105, 181–183
variance 39
variation, contribution of environmental

factors to total xi
Photoperiod

genes 257, 265
promotion pathway 258, 263
reaction 102
response xv, 263
response in maize, genetic components of

257
response, inheritance of 257
sensitivity 110, 111, 258
sensitivity genes in rice 258
sensitivity genes in wheat 258
sensitivity in maize 258

Photoperiod-dependent QTL 263
Photoperiod-independent QTL 263
Photorespiration 276, 280
Photosynthesis 168, 227, 271, 278, 280

genes, effects of environmental factors on
227

Photosynthetic
carbon fixation 280
nitrogen-use efficiency 277, 278

Photo-thermosensitivity 110
Phototropism 9
Phylogenetic inference 34, 35
Phylogenetic space 26
Phylogeny 35
Physiological parameters 91
Phytochrome 264, 278
PLABQTL software 259, 260
Plant biotechnology 189, 194
Plant breeding xiv, 23, 27, 28, 33, 69, 143, 145,

353
process 69
and quantitative genetics 33, 69

Plant breeding
application of mixed models in 353
application of modelling in 143
definition of 69
modelling in 145

Plant genetic engineering 189
Plant height QTL 117
Plant hybrid 2

monograph 2
Plant hybrids 7
Plant morphogenesis 189, 190
Plant physiology xv
Plant transformation 192
Plastid inheritance 14
Platyhelminthes 2

mitosis 2
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Pleiotropic effects 145, 171, 172, 184
Pleiotropy 14, 27, 103, 115, 146
Pleomorphy 3

Schizomycetes 3
Pollen

control factor 70
transformation system 193

Polyacrylamide gel electrophoresis 125
Polyethylene glycol 192, 193
Polygenic sterility in rice 114
Polygon 297, 298

view of GGE biplot 298
Polypeptide 14
Polyploidization, evolutionary history of 23
POPMIN computer program 137, 138
Population

genetics 15, 29
size 138, 140
stratification effect 61
structure 39

Position effect 27
Positional cloning 125
Precision graphical genotypes 139, 140
Predicted gain 374, 375
Predicted yield gain 376, 378, 380
Predicted-gain equation 75
Prediction of untested crosses 355
Primary effects 307
Principal component

analysis 306
axis 379
rotation 333

Principal components 290, 292, 295, 300
Probability

of independence 2
of outperforming a check 230

Progeny test 121, 356
Progeny tests for family selection 355
Progress in GEI 221
Progressive external ophthalmoplegia 14
Proline accumulation pathways 168
Proportionality restriction 309
Protein

expression 71
phosphorylation 278
quality improvement 87
sequences 34, 35
structure 35

Protein-quality locus 125
Proteome 15, 127
Proteomics 26, 36, 97, 125
Protoplast fusion 189, 191, 201, 204
Protoplasts 192
Pseudo-overdominance 77
Pseudoreplication 62
Purity of the gametes 8

QCC see QU-GENE Computing Cluster
QEI

effects 247
in factorial regression 248

QEI 233

see also QTL–E interaction
QT nucleotide 126
QTL see Quantitative trait loci
QTL

across developmental stages 118
across genetic backgrounds 113
alleles 118
allelism test 117, 123
analysis 40, 55, 77, 104, 110, 127, 128,

259
analysis in mice 52
analysis, factorial regression for 247
analysis, regression approaches to 246
analysis: problems and solutions 45
for barley yield 102
characterization 93
cloning 124
complementation strategy 135
detection 65, 139, 140, 274
detection, adjusting for spatial field trend

348
detection, mixed model for 349
for developmental traits 102
for disease resistance 104, 105
effects 150, 154
for flowering 257, 265
for flowering in rice 264
for flowering time 51
for heading date 110
identification 92, 135, 138
in breeding programmes 120
inferences 42
for leaf rolling 112
for lodging 102
main effects 249
for malt quality 102–105
mapping xi, xiv, 26, 47, 48, 51, 64, 101,

105, 111, 117, 118, 121, 123–125,
127, 146, 259–261, 263

mapping in complex pedigrees 30
mapping in rice 109, 112
mapping precision 122
mapping under drought 92
mapping using sib pairs 30
for physiological parameters 92
placement 125
for plant height 102, 125
for plant height in rice 116, 117
for resistance to MSV 89
stability 95
for stay green 162
for tiller number 119
validation 105, 138
for yield 102

QTL
detection of 337
estimation and testing for 248
fine mapping of 29

QTL–E interaction xv, 60, 63, 86, 102, 113, 122,
123, 226, 233, 235, 245–249, 251–254

QTL-mapping power 115
QTL-sharing frequency 111, 112
Qualitative traits xi
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Quantitative
genetic implications of endosperm 28
genetics xiv, 18, 23, 24, 28, 33, 69, 70, 73,

143, 144
contributions to plant breeding 70

genetics and bioinformatics 33
genetics and plant breeding xi, xiv, 33, 69
genetics and plant breeding in the 21st

century, a symposium xi, xiii
genetics tools 70
variation, use of xi

Quantitative genetics
application of modelling in 143
applied xi
classical 24
contributions of 73
definition of 69
future role of 18
genomics 39
genomics and plant breeding 23
impact of genomics on 24
integrating molecular techniques into 69
modelling in 144
neoclassical 24

Quantitative genetics–genomics interface 28
Quantitative trait

alleles 140
locus or loci xiii, xv, 25, 26, 29, 30, 39,

40, 42, 45, 47, 48, 50–52, 55, 59,
60, 63–65, 72, 77, 85, 86, 89, 92,
93, 95, 101–105, 109–125, 127,
128, 135, 138–140, 146, 150, 154,
162, 209, 226, 233, 235, 245–249,
251–254, 257, 259–265, 274, 337,
348, 349

Quantitative traits xi, xv
Quantitative traits and plant breeding 143
Quantitative traits, genetic architecture of 144
QU-GENE 144, 148, 151, 153, 156, 169, 174, 180,

181
application module 156
Computing Cluster 144
model 169, 174
quantitative genetics 144
simulation platform 153
simulation software 148, 151

Radiation-use efficiency 271
Random mating 139
Random effects AMMI models 337
Random effects two-way model 305, 308, 317,

319
Randomization

procedure 249, 251
test 246

Randomly amplified polymorphic DNA 119,
204, 212

Rank-two matrix 291, 292, 307
analysis 204
markers 212

RAPD see Randomly amplified polymorphic
DNA

Reaction norm 14
Reciprocal

crosses 4
hybrids 2
recurrent selection 76

Recombinant
DNA technology 78
inbred lines 46, 59, 90, 96, 109, 110, 112,

113, 135, 140, 192, 210, 246
Recombination 2, 10–12, 25, 59, 145

cold spots 145
frequency 25
hot spots 145
mechanisms 11, 12

Recurrent parent recovery 74
Recurrent selection 63, 75, 76, 156
Reductional division 10, 14
Regression approach 306
Regression, deviations from 245
Regulatory sequences 26
Relatedness of crosses 356
Relative efficiency 235
Relative genotype adaptation across

environments 295
Reliability, breeding for 233, 234
REML see Restricted maximum likelihood

estimation
Reporter gene 15
Representativeness of environments 300
Repulsion linkage 77, 103
Resemblance between relatives 24
Residual maximum likelihood 324, 331, 338,

340, 342, 345
ratio test 331, 342, 345

Residual mean square 309, 320
predictive difference 320

Resistance to stresses, breeding for 232
Resource allocation and GEI 235
Restricted log-likelihood 354
Restricted maximum likelihood

estimation 28, 232, 354, 359
method 232

Restriction fragment length polymorphisms xiii,
46, 49, 50, 61, 75, 86, 109, 110, 120, 124,
201, 209, 212–214, 233, 250, 259, 356

analyses 214
map 124

Retrospective indices 71
Reverse physiology 173
Reverse-quantitative genetics approach 126
RFLPs see Restriction fragment length

polymorphisms
Rice

diseases 197
ecosystems 197
genes 47
insects 197
production 197

Rice, wild relatives of 197
RiceGene database 124
Ridleyi complex 200
RIL population 140
RILs see Recombinant inbred lines
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Risk assessment 231
RMS see Residual mean square
RMS after fitting SHMM 309
Root mean square predictive difference 319
rRNA 15
RUBISCO 278
RUE see Radiation-use efficiency

S1 family selection 156, 158
S1 recurrent selection 181
S1 selection 159
S1 strategy 157
Saccharum spp. 355
Saccharomyces 15
SAGE see Serial analysis of gene expression
Salinity tolerance 121, 203
Salt tolerance in flax 191
Sample size 25
Sativa complex 200, 201
Secondary effects 307, 313
Segmental

dominance 10
duplication 23

Selectable marker gene 89
Selecting best test environments 300
Selection 24, 29, 70, 71, 75, 120–122, 135, 157,

182, 234, 374
differential 71, 374
gain 70
independent of environments 121
index 182
for multiple genes 122
for multiple traits 122
in non-stress environments 234
progress 157
response 24, 29, 135
in stress environments 234

Selfing 114, 139
Self-pollination strategy 88
Semi-random distribution 4
Sequence

alignment 34, 35, 40–42
analysis 33, 126

Serial analysis of gene expression (SAGE) 41
Sex

determination, ancient theories of 6, 9
linkage 5, 9

Sex-limited inheritance 9
red–green colour blindness 5

Shifted multiplicative model xv, xvi, 230,
307–321, 370

SHMM see Shifted multiplicative model
SHMM clustering of genotypes 311
Shoot-apex culture 189
Shrinkage estimates 307, 317, 319, 321

of LBM 317, 319
Shrinkage-estimation procedures 250
Shukla’s stability variance 230
Sigma Xi, The Scientific Research Society xiii
Signal transduction 96, 235
Signalling genes 170
Simple interval mapping 248

Simple sequence repeats 40, 85–87, 109, 110,
120, 124, 125, 209, 214, 259

cost and efficiency of 86
Simulated breeding 158
Simulation 143, 144, 155, 159, 177, 183, 184,

277, 346, 350
of gene and genotype effects 177
modelling 143, 277
models 183, 184

Single nucleotide polymorphisms 35
Single recombinant lines 54–56
Single-seed descent 76, 90
Single-stranded RNA

phage (MS2) 14
virus 205

Singular value decomposition 292, 293, 295,
306, 307, 309–312, 315, 317, 332, 333

of environment-centred data 295
solution 312, 315, 317

Site regression model 236, 307–321
and crossover interaction 310

Site-directed mutagenesis 36
Smooth spatial trend 324
SNPs 35, 56, 72, 85, 109, 120, 122, 125, 126

see also Single nucleotide polymorphisms
snRNA 15
Somaclonal variation 189, 191, 193
Somatic

embryogenesis 191
embryos 189
hybrids 189, 204
segregation 52

Sorghum maturity 178
Southern blot 86
Spatial

analysis xvi, 324, 325, 327, 339, 342, 345
field trend 323, 337
field trend adjustments 337
mixed model for MET data xvi, 328, 341,

343, 348
models 339, 340, 344
multiplicative mixed model 324, 334, 337,

349
variation 223, 323, 324, 334, 337, 339, 340,

346, 350
Specialty proteins 194
Specific adaptation 221, 223, 289, 365–367,

371, 373–376
breeding for 373
exploitation of 365

Specific combining ability 76, 77, 356
Specific-adaptation strategy 365, 377, 378, 380
SQL see Structured query language
SREG see Site regression model
SRLs see Single recombinant lines
SSRs see Simple sequence repeats
Stability xi, 219, 223–226, 229–234, 289, 290,

298, 299, 359
analyses xiv, 234
analysis and GEI 219
breeding for 233
concepts of 229
and covariates 231
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of genotypes 298
statistics 223–226, 229
variance 230, 232, 234, 359
variance for unbalanced data 232
and yield, simultaneous selection for 230

Stabilizing selection 60
STABLE computer program 230
STAIRS see Stepped aligned inbred recombinant

strains
Starch biosynthesis 173
Starch synthesis 275
Static concept of stability 229, 367
Statistical genetics 8

and genomics, integration of 41
and plant breeding xiii

Statistical methods xi
Statistical modelling 353
Stay green 161, 162, 178–180
Stepped aligned inbred recombinant strains xiv,

48, 52, 54–57
advantages of 56

Stochastic effect 169
Structural

gene 16
genomics 39, 144
proteins 15

Structured query language 38
Submergence tolerance 121
Substitution lines 48, 51, 52
SUCROS model 171
Supralocus 64
SVD see Singular value decomposition
SwissProt database 37
Symmetrical partitioning 295
Synteny 2, 50
Systematics 3
Systemic acquired resistance 227

Tandem selection 71
Target gene 136, 137
Target population of environments 149, 150,

153, 167, 168, 175–177, 184
T-DNA 16, 17, 126, 193
TDT see Transmission-disequilibrium test.
Temperature-sensitive genic male sterility 122
Temporal

adaptation 230
stability 234, 365
variability 223

Teosinte 29, 92
Teosinte, drought tolerance in 92
Tertiary effects 313
Test-crossing 121
Tetrads 3
Texmont rice 192
Thermal

adaptation, breeding for broad 233
time for sorghum flowering 179
time-dependent biochemical rates of

reaction 178
Thermotherapy 190
Ti plasmid 193

Tillering in sorghum 178
Time-related mapping 118
Tissue culturability 121
Tissue culture in crop improvement xiv, xv, 189
TPE see Target population of environments
Trait-expression analysis 56
Transcription 15
Transcriptional gene-fusion

technology 15
vector 16

Transcriptome 45, 127
Transferring genes from wild species into rice

202
Transformation 15, 16, 48, 56, 72, 74, 78, 79,

124
tobacco 16

Transformation system 124
Transformation technology 79
Transgene 78, 79, 89, 127, 193

technology 74, 193
Transgenic

crop plants 27, 144, 192, 205
germ-plasm 233
maize 194

Transgressive
progeny for flowering time 263
segregation 117, 209, 263
segregation for earliness 263

Translation 15
initiation codon 15

Translational gene-fusion vectors 15
Translocation stocks 101
Translocations 11, 12, 101
Transmission-based mapping 119
Transmission-disequilibrium test (TDT) 30, 59,

62–64, 66, 120
Transpiration efficiency 161, 178–180

in sorghum 178
Transposable element 15, 126

sequences 15
Transposon 126
Trisomics 101
tRNA 14, 15
Tropical maize xiv, 85
Two-way fixed effects model 305
Type 1 stability 229, 367
Type 2 stability 229, 367
Type 3 stability 229
Type 4 stability 229, 367
Type I error 230, 248, 249
Type I error in randomization test 249
Type I error, genome-wide 248
Type II error 230

Unbalanced data 329, 300, 334
Unconditional QTL mapping 118, 119
Univariate

non-parametric methods for GEI analyses
224

parametric methods for GEI analyses 224
regression 246

Upstream genes 95
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Variance decomposition paper of Fisher 23
Variance–covariance structure 254, 353
Variety recommendation 375
Variety–environment

data 337, 341, 349
effects 323, 324, 334
interaction 329, 330, 332–334, 337, 343,

346, 350
Variogram 326, 327, 339
Vector 298
Vegetative hybrids 6
Vernalization genes 257
Vertex hull 297
Virus-free

plants 190
shoot-apex tissue 190

Visualization of genotype performance in an
environment 295

Visualizing groups of environments 298

Water-stress tolerance 112
Water-use efficiency 271
Watson and Crick model of the double helix

17
Waxy gene 117, 118
Wheat-barley addition lines 101
Which-won-where pattern 290
White-eyed fly 9
Whole-genome

selection 122
sequences 23, 26

Wide adaptation 366, 371, 373–377

Wide compatibility 121, 122
Wide hybrids 201, 214

in rice 214
Wide-adaptation strategy 365, 378, 380
Wild relatives of rice 197
Wild species of Oryza 202, 203
Within-environment

standard error-scaled data 292
standard deviation-scaled data 292

World
hunger 194
population xiii, 222, 269

Wricke’s ecovalence 230
WUE see Water-use efficiency

X chromosome 9

Y chromosome 9
Yield

component 91
stability 365, 366
and stability, simultaneous selection for

230
stability targets 365
stability, exploitation of 365

Yield–reliability concept 368
Yield–stability statistic 230
YS statistic 230

Zea mexicana see Teosinte
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